Advertisement

Journal of Materials Science

, Volume 47, Issue 20, pp 7036–7046 | Cite as

Densification mechanisms of spark plasma sintering: multi-step pressure dilatometry

  • Wei Li
  • Eugene A. Olevsky
  • Joanna McKittrick
  • Andrey L. Maximenko
  • Randall M. German
Sintering 2011

Abstract

The effects of electrical current and mechanical pressure on the densification of spherical copper powder during spark plasma sintering (SPS) are examined. A novel multi-step pressure dilatometry method is introduced to compare the constitutive behavior of the copper powder under nearly equivalent current-insulated and current-assisted SPS process conditions. The strain rate sensitivity agrees with that predicted for a dislocation climb-controlled creep densification mechanism for both processing setups. Accelerated densification rate leading to a higher final relative density is observed for the current-assisted SPS.

Keywords

Spark Plasma Sinter Strain Rate Sensitivity Copper Powder Creep Mechanism Densification Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The support of the US Army ARDEC, Picatinny Arsenal (Contract Award #W15QKN-09C-0128) is gratefully appreciated. The support of the National Science Foundation, Division of Civil, Mechanical, and Manufacturing Innovations (Grant CMMI- 0758232) is gratefully appreciated. The authors are grateful to Dr. Steve Barlow who assisted in SEM work, at the San Diego State University Electron Microscopy Facility acquired by NSF instrumentation grant DBI-0959908. The support of the Department of Science and Education of Russian Federation (Grant Contract 11.G34.31.0051) is also gratefully appreciated.

References

  1. 1.
    Munir ZA, Anselmi-tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi: 10.1007/s10853-006-6555-2763 CrossRefGoogle Scholar
  2. 2.
    Shon IJ, Munir ZA (1995) Mater Sci Eng A 202:256CrossRefGoogle Scholar
  3. 3.
    Xie G, Ohashi O, Song M, Mitsuishi K, Furuya K (2005) Appl Surf Sci 241:102CrossRefGoogle Scholar
  4. 4.
    Goldberger WM, Merkle B, Boss D (1994) Adv Powder Metall Part Mater 6:91Google Scholar
  5. 5.
    Vanmeensel K, Huang SH, Laptev A, Vleugels J, Van Der Biest O (2009) Modeling of field assisted sintering technology (FAST) and its application to electro-conductive systems, advanced processing and manufacturing technologies for structural and multifunctional materials II: ceramic engineering and science proceedings. Wiley, Hoboken, p 109Google Scholar
  6. 6.
    Tokita M (1999) Mater Sci Forum 83:308Google Scholar
  7. 7.
    Chaim R (2007) Mater Sci Eng A 443:25CrossRefGoogle Scholar
  8. 8.
    Ichikawa K, Murakami T, Nakayama Y, Miyamato S, Tokita M (2003) Mater Sci Forum 426:2375CrossRefGoogle Scholar
  9. 9.
    Chaim R, Shen Z, Nygren M (2004) J Mater Res 19:2527CrossRefGoogle Scholar
  10. 10.
    Khaleghi E, Lin YS, Olevsky EA, Meyers M (2010) Scripta Mater 63:577CrossRefGoogle Scholar
  11. 11.
    Bradbury W, Olevsky E (2011) Scripta Mater 63:77Google Scholar
  12. 12.
    Anselmi-Tamburini U, Garay JE, Munir ZA (2006) Scripta Mater 54:823CrossRefGoogle Scholar
  13. 13.
    Tokita M (1997) New Ceram 10:43 (in Japanese)Google Scholar
  14. 14.
    Risbud SH, Shan CH, Mmukherjee AK, Kim MJ, Bow JS, Holl RA (1995) J Mater Res 10:237CrossRefGoogle Scholar
  15. 15.
    Groza JR, Zavaliangos A (2000) Mater Sci Eng A 287:171CrossRefGoogle Scholar
  16. 16.
    Chaim R, Margulis M (2005) Mater Sci Eng A 407:180CrossRefGoogle Scholar
  17. 17.
    Khor KA, Chen XJ, Chan SH, Yu LG (2004) Mater Sci Eng A 366:120CrossRefGoogle Scholar
  18. 18.
    Olevsky EA, Froyen L (2006) Scripta Mater 55:1175CrossRefGoogle Scholar
  19. 19.
    Olevsky EA, Kandukuri S, Froyen L (2007) J Appl Phys 102:114913CrossRefGoogle Scholar
  20. 20.
    Olevsky EA, Kandukuri S, Froyen L (2008) Key Eng Mater 368–372:1580CrossRefGoogle Scholar
  21. 21.
    Olevsky EA, Froyen L (2009) J Am Ceram Soc 92:S122CrossRefGoogle Scholar
  22. 22.
    Bernard-Grainger G, Guizard C (2007) Acta Mater 55:3493CrossRefGoogle Scholar
  23. 23.
    Langer J, Hoffmann MJ, Guillon O (2011) J Am Ceram Soc 94:2344CrossRefGoogle Scholar
  24. 24.
    Langer J, Hoffmann MJ, Guillon O (2009) Acta Mater 57:5454CrossRefGoogle Scholar
  25. 25.
    Langer J, Hoffmann MJ, Guillon O (2011) J Am Ceram Soc 94:131Google Scholar
  26. 26.
    Frei JM, Anselmi-Amburini U, Munir ZA (2007) J Appl Phys 101:114914CrossRefGoogle Scholar
  27. 27.
    Zhang ZH, Wang FC, Wang L, Li SK (2008) Mater Sci Eng A 476:201CrossRefGoogle Scholar
  28. 28.
    Reis J, Chaim R (2008) Mater Sci Eng A 49:356Google Scholar
  29. 29.
    Yanagisawa O, Matsugi K, Hatayama T (1997) Mater Trans JIM 38:240Google Scholar
  30. 30.
    Ohashi O, Yoshioka T, Nitta I, Hasegawa H, Sugii S (1999) J Jpn Inst Met 63:983Google Scholar
  31. 31.
    Song XY, Liu XM, Zhang JX (2005) Sci China Ser E 48:258CrossRefGoogle Scholar
  32. 32.
    Wang L, Wang F, Zhang Z, Liao Q (2007) Mater Eng 36:150Google Scholar
  33. 33.
    Zhang Z, Wang F, Wang L, Li S, Osamu S (2008) Mater Lett 62:3987CrossRefGoogle Scholar
  34. 34.
    Guyot P, Rat V, Coudert JF, Jay F, Maitre A, Pradeilles N (2012) J Phys D 45:092001CrossRefGoogle Scholar
  35. 35.
    Wilkson DS, Ashby MF (1975) Acta Mater 23:1277CrossRefGoogle Scholar
  36. 36.
    Johnson KL (1970) J Mech Phys Solids 18:115CrossRefGoogle Scholar
  37. 37.
    Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, Cambridge, p 32CrossRefGoogle Scholar
  38. 38.
    Mukherjee AK, Bird JE, Dorn JE (1969) Trans ASM 62:155Google Scholar
  39. 39.
    Nabarro FRN (1967) Phil Mag A 16:231CrossRefGoogle Scholar
  40. 40.
    Herring C (1951) J Appl Phys 21:437CrossRefGoogle Scholar
  41. 41.
    Gifkins RC (1976) Metall Trans 7A:1225Google Scholar
  42. 42.
    Weertman J (1968) Trans ASM 61:681Google Scholar
  43. 43.
    Weertman J (1957) J Appl Phys 28:1185CrossRefGoogle Scholar
  44. 44.
    Olevsky EA (1998) Mater Sci Eng R 23:41CrossRefGoogle Scholar
  45. 45.
    Zhang ZH, Wang FC, Lee SK, Liu Y (2009) Mater Sci Eng A 523:134CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wei Li
    • 1
    • 3
  • Eugene A. Olevsky
    • 1
    • 4
  • Joanna McKittrick
    • 3
  • Andrey L. Maximenko
    • 4
  • Randall M. German
    • 2
  1. 1.Department of Mechanical Engineering, College of EngineeringSan Diego State UniversitySan DiegoUSA
  2. 2.College of EngineeringSan Diego State UniversitySan DiegoUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaLa Jolla, San DiegoUSA
  4. 4.Key Laboratory for Electromagnetic Field Assisted Processing of Novel MaterialsMoscow Engineering Physics InstituteMoscowRussia

Personalised recommendations