Journal of Materials Science

, Volume 47, Issue 16, pp 6005–6014 | Cite as

Stability of thermal-induced phase transformations in the severely deformed equiatomic Ni–Ti alloys



Nickel–Titanium (Ni–Ti) alloys of two different near-equiatomic chemical compositions (Ni-rich and Ti-rich) are subjected to severe plastic deformation by means of high pressure torsion (HPT) by higher rotation speed and larger total number of rotations. Further, the as-received and severely deformed specimens are subjected to heat treatments at 300 and 350 °C. Phase transformations of the specimens under different conditions are analyzed by employing differential scanning calorimetry and by X-ray diffraction. The results obtained show that in Ti-rich Ni–Ti alloy the sequence of phase transformations is found to be stable against heat treatments and independent of previous HPT process. Also, in Ni-rich Ni–Ti alloy, when it is subjected to HPT, the sequence of phase transformations found to remain unaltered. However, with or without HPT, after the heat treatments at 300 and 350 °C, the sequence of the phase transformation is found to be affected.


Martensite Phase Transformation Severe Plastic Deformation Differential Scanning Calorimetry Thermogram High Pressure Torsion 



The pluriannual financial support (by Fundação para a Ciência e a Tecnologia, Ministério da Educação e Ciência) of CENIMAT/I3N through the Strategic Project, LA 25, 2011–2012 and the research project Smart Composites (PTDC/CTM/66380/2006) is gratefully acknowledged by KKM and FMBF. KKM gratefully acknowledges the fellowship under the scheme, ‘Ciência 2007’ with Ref. No. C2007-443-CENIMAT-6/Ciência2007.


  1. 1.
    Lin HC, Wu SK, Chou TS, Kao HP (1991) Acta Metall Mater 39:2069–2080CrossRefGoogle Scholar
  2. 2.
    Filip P, Mazanec K (1995) Scripta Metall Mater 32:1375–1380CrossRefGoogle Scholar
  3. 3.
    Miller DA, Lagoudas DC (2001) Mater Sci Eng A 308:161–175CrossRefGoogle Scholar
  4. 4.
    Otsuka K, Ren X (2005) Prog Mater Sci 50:511–678CrossRefGoogle Scholar
  5. 5.
    Zehetbauer M, Grossinger R, Krenn H, Krystian M, Pippan R, Rogl P, Waitz T, Wurschum R (2010) Adv Eng Mater 12:692–700CrossRefGoogle Scholar
  6. 6.
    Waitz T, Kazykhanov V, Karnthaler HP (2004) Acta Mat 52:137–147CrossRefGoogle Scholar
  7. 7.
    Prokoshkin SD, Khmelevskaya IYu, Dobatkin SV, Trubitsyna IB, Tatyanin EV, Stolyarov VV, Prokofiev EA (2005) Acta Mater 53:2703–2714CrossRefGoogle Scholar
  8. 8.
    Waitz T, Spisak D, Hafner J, Karnthaler HP (2005) Europhys Lett 71:98–103CrossRefGoogle Scholar
  9. 9.
    Pushin VG, Valiev RZ (2003) Proceedings of the Symposium on Interfacial Effects in Nanostructured Materials, Warsaw, Poland, 14-18 September 2002, Solid State Phenom 94:13-24Google Scholar
  10. 10.
    Pushin VG, Stolyarov VV, Valiev RZ, Kourov NI, Kuranova NN, Prokofiev EA, Yurchenko LI (2002) Ann Chim Sci Mat 27:77–88CrossRefGoogle Scholar
  11. 11.
    Waitz T, Kazykhanov V, Karnthaler HP (2004) Acta Mater 52:137–147CrossRefGoogle Scholar
  12. 12.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881–981CrossRefGoogle Scholar
  13. 13.
    Valiev R (2004) Nat Mater 3:511–516CrossRefGoogle Scholar
  14. 14.
    Suwas S, Arruffat-Massion R, Tóth LS, Fundenberger JJ, Eberhardt A, Skrotzki W (2006) Metall Mater Trans A 37:739–753CrossRefGoogle Scholar
  15. 15.
    Dobatkin SV, Zrnik J, Mamuzic I (2006) Metalurgija 45:313–321Google Scholar
  16. 16.
    Valiev RZ, Mukherjee AK (2001) Scr Mat 44:1747–1750CrossRefGoogle Scholar
  17. 17.
    Mahesh KK, Braz Fernandes FM, Silva RJC, Gurau G (2010) Physics Procedia 10:22–27CrossRefGoogle Scholar
  18. 18.
    Paula AS, Mahesh KK, Braz Fernandes FM (2008) Eur Phys J Special Topics 158:45–51CrossRefGoogle Scholar
  19. 19.
    Shu YC, Bhattacharya K (1998) Acta Mat 46:5457–5473CrossRefGoogle Scholar
  20. 20.
    Inoue H, Miwa N, Inakazu N (1996) Acta Mat 44:4825–4834CrossRefGoogle Scholar
  21. 21.
    Rentenberger C, Waitz T, Karnthaler HP (2004) Scr Mat 51:789–794CrossRefGoogle Scholar
  22. 22.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893–979CrossRefGoogle Scholar
  23. 23.
    Lin HC, Wu SK (1992) Mater Sci Eng, A 158:87–91CrossRefGoogle Scholar
  24. 24.
    Gall K, Tyber J, Wilkesanders G, Robertson SW, Ritchie RO, Maier HJ (2008) Mater Sci Eng A 486:389–403CrossRefGoogle Scholar
  25. 25.
    Gleiter H (1989) Prog Mater Sci 33:223–315CrossRefGoogle Scholar
  26. 26.
    Ewert JC, Böhm I, Peter R, Haider F (1997) Acta Mater 45:2197–2206CrossRefGoogle Scholar
  27. 27.
    Nakayama H, Tsuchiya K, Umemoto M (2001) Scripta Mater 44:1781–1785CrossRefGoogle Scholar
  28. 28.
    Ford DS, White SR (1996) Acta Mater 44:2295–2307CrossRefGoogle Scholar
  29. 29.
    Kockar B, Karaman I, Kim JI, Chumlyakov YI, Sharp J, (Mike) Yu CJ (2008) Acta Mater 56:3630–3646CrossRefGoogle Scholar
  30. 30.
    Tyumentsev AN, Surikova NS, Litovchenko IYu, Pinzhin YuP, Korotaev AD, Lysenko OV (2004) Acta Mater 52:2067–2074CrossRefGoogle Scholar
  31. 31.
    Mahesh KK, Braz Fernandes FM, Silva RJC (2009) ESOMAT 2009. In: Šittner P, Heller L, Paidar V (eds) The 8th European symposium on martensitic transformations, [ID-05014], EDP Sciences (
  32. 32.
    Li Z, Cheng X (2007) J Univ Sci Technol B 14:533–537CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • K. K. Mahesh
    • 1
  • F. M. Braz Fernandes
    • 1
  • G. Gurau
    • 2
  1. 1.CENIMAT/I3N, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Dunarea de Jos University of GalatiGalatiRomania

Personalised recommendations