Advertisement

Journal of Materials Science

, Volume 47, Issue 22, pp 7719–7725 | Cite as

Twenty-five years of severe plastic deformation: recent developments in evaluating the degree of homogeneity through the thickness of disks processed by high-pressure torsion

  • Megumi Kawasaki
  • Roberto B. Figueiredo
  • Terence G. Langdon
Ultrafine Grained Materials

Abstract

The processing of disks by high-pressure torsion leads to an inhomogeneous distribution in strain with a high strain around the perimeter of the disk and a zero strain in the center. Despite this apparent inhomogeneity, there are now many experiments showing that the hardness values on the surfaces of disks gradually evolve with increasing strain to give a reasonably high level of homogeneity. Experiments were conducted to determine whether this high level of homogeneity extends also through the thickness of the disks or whether inhomogeneities occur in the axial direction. Results are presented for high-purity aluminum and a magnesium AZ31 alloy as two representative materials showing different hardness characteristics.

Keywords

Slip System Severe Plastic Deformation Magnesium AZ31 Alloy Gradient Plasticity Modeling Excellent Homogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported in part by the National Science Foundation of the United States under Grant No. DMR-0855009 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

References

  1. 1.
    Langdon TG (2007) Int J Mater Res 98:251Google Scholar
  2. 2.
    Valiev RZ, Xia K, Langdon TG (2009) Int J Mater Res 100:1623CrossRefGoogle Scholar
  3. 3.
    Bridgman PW (1935) Phys Rev 48:825CrossRefGoogle Scholar
  4. 4.
    Bridgman PW (1943) J Appl Phys 14:273CrossRefGoogle Scholar
  5. 5.
    Segal VM, Reznikov VI, Drobyshenskiy AE, Kopylov VI (1951) Russian Metall 1:99Google Scholar
  6. 6.
    Valiev RZ, Kaibyshev OA, Kuznetsov RI, Musalimov RS, Tsenev NK (1988) Dokl Akad Nauk SSSR 301:864Google Scholar
  7. 7.
    Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Mater Sci Eng A137:35Google Scholar
  8. 8.
    Valiev RZ, Korznikov AV, Mulyukov RR (1993) Mater Sci Eng A168:141Google Scholar
  9. 9.
    Valiev RZ, Zehetbauer MJ, Estrin Y, Höppel HW, Ivanisenko Y, Hahn H, Wilde G, Roven HJ, Sauvage X, Langdon TG (2007) Adv Eng Mater 9:527CrossRefGoogle Scholar
  10. 10.
    Valiev RZ, Langdon TG (2011) Metall Mater Trans 42A:2842Google Scholar
  11. 11.
    Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753CrossRefGoogle Scholar
  12. 12.
    Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753CrossRefGoogle Scholar
  13. 13.
    Vorhauer A, Pippan R (2004) Scripta Mater 51:921CrossRefGoogle Scholar
  14. 14.
    Hebesberger T, Stüwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Acta Mater 53:393CrossRefGoogle Scholar
  15. 15.
    Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A393(2005):344Google Scholar
  16. 16.
    Sakai G, Nakamura K, Horita Z, Langdon TG (2005) Mater Sci Eng A406:268Google Scholar
  17. 17.
    Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A410–411:277Google Scholar
  18. 18.
    Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:422Google Scholar
  19. 19.
    Kawasaki M, Figueiredo RB, Langdon TG (2010) Acta Mater 59:308CrossRefGoogle Scholar
  20. 20.
    Figueiredo RB, Langdon TG (2011) Mater Sci Eng A528:4500Google Scholar
  21. 21.
    Figueiredo RB, Aguilar MTP, Cetlin PR, Langdon TG (2011) Metall Mater Trans 42A:3013CrossRefGoogle Scholar
  22. 22.
    Pippan R, Scheriau S, Hohenwarter A, Hafok M (2008) Mater Sci Forum 584–586:16CrossRefGoogle Scholar
  23. 23.
    Hohenwarter A, Bachmaier A, Gludovatz B, Scheriau S, Pippan R (2009) Int J Mater Res 100:1653CrossRefGoogle Scholar
  24. 24.
    Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Acta Mater 44:4705CrossRefGoogle Scholar
  25. 25.
    Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Mater Sci Eng A387–389:809Google Scholar
  26. 26.
    Wetscher F, Pippan R, Sturm S, Kauffmann F, Scheu C, Dehm G (2006) Metall Mater Trans 37A:1963CrossRefGoogle Scholar
  27. 27.
    Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203CrossRefGoogle Scholar
  28. 28.
    Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168CrossRefGoogle Scholar
  29. 29.
    Kawasaki M, Langdon TG (2008) Mater Sci Eng A498:341Google Scholar
  30. 30.
    Xu C, Horita Z, Langdon TG (2008) J Mater Sci 43:7286. doi: 10.1007/s10853-008-2624-z CrossRefGoogle Scholar
  31. 31.
    Xu C, Langdon TG (2009) Mater Sci Eng A503:71Google Scholar
  32. 32.
    Kawasaki M, Ahn B, Langdon TG (2010) Acta Mater 58:919CrossRefGoogle Scholar
  33. 33.
    Kawasaki M, Ahn B, Langdon TG (2010) Mater Sci Eng A527:7008Google Scholar
  34. 34.
    Xu C, Horita Z, Langdon TG (2010) Mater Trans 51:2CrossRefGoogle Scholar
  35. 35.
    Kawasaki M, Ahn B, Langdon TG (2010) J Mater Sci 45:4583. doi: 10.1007/s10853-010-4420-9 CrossRefGoogle Scholar
  36. 36.
    Duan ZC, Liao XZ, Kawasaki M, Figueiredo RB, Langdon TG (2010) J Mater Sci 45:4621. doi: 10.1007/s10853-010-4400-0 CrossRefGoogle Scholar
  37. 37.
    Serre P, Figueiredo RB, Gao N, Langdon TG (2011) Mater Sci Eng A528:3601Google Scholar
  38. 38.
    Wongsa-Ngam J, Kawasaki M, Zhao Y, Langdon TG (2011) Mater Sci Eng A528:7715Google Scholar
  39. 39.
    Kawasaki M, Alhajeri SN, Xu C, Langdon TG (2011) Mater Sci Eng A529:345Google Scholar
  40. 40.
    Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186CrossRefGoogle Scholar
  41. 41.
    Geist D, Rentenberger C, Karnthaler HP (2011) Acta Mater 59:4578CrossRefGoogle Scholar
  42. 42.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  43. 43.
    Figueiredo RB, Cetlin PR, Langdon TG (2011) Mater Sci Eng A528:8198Google Scholar
  44. 44.
    Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Acta Mater 60:3190CrossRefGoogle Scholar
  45. 45.
    Edalati K, Horita Z, Langdon TG (2009) Scripta Mater 60:9CrossRefGoogle Scholar
  46. 46.
    Figueiredo RB, Cetlin PR, Langdon TG (2007) Acta Mater 55:4769CrossRefGoogle Scholar
  47. 47.
    Edalati K, Horita Z (2010) Mater Trans 51:1051CrossRefGoogle Scholar
  48. 48.
    Cao Y, Wang YB, Alhajeri SN, Liao XZ, Zheng WL, Ringer SP, Langdon TG, Zhu YT (2010) J Mater Sci 45:765. doi: 10.1007/s10853-009-3998-2 CrossRefGoogle Scholar
  49. 49.
    Cao Y, Kawasaki M, Wang YB, Alhajeri SN, Liao XZ, Zheng WL, Ringer SP, Zhu YT, Langdon TG (2010) J Mater Sci 45:4545. doi: 10.1007/s10853-010-4485-5 CrossRefGoogle Scholar
  50. 50.
    Tian YZ, An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2010) Scripta Mater 63:65CrossRefGoogle Scholar
  51. 51.
    Cao Y, Wang YB, Figueiredo RB, Chang L, Liao XZ, Kawasaki M, Zheng WL, Ringer SP, Langdon TG, Zhu YT (2011) Acta Mater 59:3903CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Megumi Kawasaki
    • 1
    • 2
  • Roberto B. Figueiredo
    • 3
  • Terence G. Langdon
    • 1
    • 4
  1. 1.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Division of Materials Science and EngineeringHanyang UniversitySeoulSouth Korea
  3. 3.Department of Materials Engineering and Civil ConstructionFederal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Materials Research Group, Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations