Advertisement

Journal of Materials Science

, Volume 47, Issue 16, pp 5955–5969 | Cite as

Influence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven fibers

  • Mehmet Dasdemir
  • Benoit Maze
  • Nagendra Anantharamaiah
  • Behnam Pourdeyhimi
Article

Abstract

In this study, we investigated the effect of polymer type, composition, and interface on the structural and mechanical properties of core–sheath type bicomponent nonwoven fibers. These fibers were produced using poly(ethylene terephthalate)/polyethylene (PET/PE), polyamide 6/polyethylene (PA6/PE), polyamide 6/polypropylene (PA6/PP), polypropylene/polyethylene (PP/PE) polymer configurations at varying compositions. The crystallinity, crystalline structure, and thermal behavior of each component in bicomponent fibers were studied and compared with their homocomponent counterparts. We found that the fiber structure of the core component was enhanced in PET/PE, PA6/PE, and PA6/PP whereas that of the sheath component was degraded in all polymer combinations compared to corresponding single component fibers. The degrees of these changes were also shown to be composition dependent. These results were attributed to the mutual interaction between two components and its effect on the thermal and stress histories experienced by polymers during bicomponent fiber spinning. For the interface study, the polymer–polymer compatibility and the interfacial adhesion for the laminates of corresponding polymeric films were determined. It was shown that PP/PE was the most compatible polymer pairing with the highest interfacial adhesion value. On the other hand, PET/PE was found to be the most incompatible polymer pairings followed by PA6/PP and PA6/PE. Accordingly, the tensile strength values of the bicomponent fibers deviated from the theoretically estimated values depending on core–sheath compatibility. Thus, while PP/PE yielded a higher tensile strength value than estimated, other polymer combinations showed lower values in accordance with their degree of incompatibility and interfacial adhesion. These results unveiled the direct relation between interface and tensile response of the bicomponent fiber.

Keywords

Interfacial Adhesion Solubility Parameter Core Polymer Tensile Response Bicomponent Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cooke TF (1996) In: Lewin M, Preston J (eds) High technology fibers, part D. Marcel Dekker Inc, New YorkGoogle Scholar
  2. 2.
    Wilkie AE (1999) Int Nonwovens J 8:146Google Scholar
  3. 3.
    Khatwani PA, Yardi SS (2003) Man Made Text India 46:19Google Scholar
  4. 4.
    Jeffries R (1971) Bicomponent fibres. Merrow Publishing Co. Ltd, WatfordGoogle Scholar
  5. 5.
    Zhang JM, Peijs T (2010) Composites Part A 41:964. doi: 10.1016/j.compositesa.2010.03.012 CrossRefGoogle Scholar
  6. 6.
    Dasdemir M, Maze B, Anantharamaiah N et al (2011) J Mater Sci 46:3269. doi: 10.1007/s10853-010-5214-9 CrossRefGoogle Scholar
  7. 7.
    Kikutani T, Arikawa S, Takaku A et al (1995) Sen-i Gakkaishi 51:408CrossRefGoogle Scholar
  8. 8.
    Kikutani T, Radhakrishnan J, Arikawa S et al (1996) J Appl Polym Sci 62:1913. doi: 10.1002/(SICI)1097-4628(19961212)62:11<1913:AID-APP16>3.0.CO;2-Z CrossRefGoogle Scholar
  9. 9.
    Radhakrishnan J, Kikutani T, Okui N (1996) Sen-i Gakkaishi 52:618CrossRefGoogle Scholar
  10. 10.
    Radhakrishnan J, Kikutani T, Okui N (1997) Text Res J 67:684Google Scholar
  11. 11.
    Cho HH, Kim KH, Kang YA et al (2000) J Appl Polym Sci 77:2254. doi: 10.1002/1097-4628(20000906)77:10<2254:AID-APP19>3.0.CO;2-M CrossRefGoogle Scholar
  12. 12.
    Cho HH, Kim KH, Kang YA et al (2000) J Appl Polym Sci 77:2267. doi: 10.1002/1097-4628(20000906)77:10<2267:AID-APP20>3.0.CO;2-5 CrossRefGoogle Scholar
  13. 13.
    Shi XQ, Ito H, Kikutani T (2006) Polymer 47:611. doi: 10.1016/j.polymer.2005.11.051 CrossRefGoogle Scholar
  14. 14.
    Fedorova N (2006) Ph.D. Dissertation. North Carolina State University, Raleigh, NCGoogle Scholar
  15. 15.
    Houis S, Schmid M, Lübben J (2007) J Appl Polym Sci 106:1757. doi: 10.1002/app.26846 CrossRefGoogle Scholar
  16. 16.
    El-Salmawy A, Kimura Y (2001) Text Res J 71:145. doi: 10.1177/004051750107100209 CrossRefGoogle Scholar
  17. 17.
    Iroh JO (1999) In: Mark JE (ed) Polymer data handbook. Oxford University Press, New YorkGoogle Scholar
  18. 18.
    Durany A, Anantharamaiah N, Pourdeyhimi B (2008) International nonwovens technical conference, Houston, TXGoogle Scholar
  19. 19.
    Boucher E, Folkers JP, Hervet H et al (1996) Macromolecules 29:774. doi: 10.1021/ma9509422 CrossRefGoogle Scholar
  20. 20.
    Brown HR (2001) Macromolecules 34:3720. doi: 10.1021/ma991821v CrossRefGoogle Scholar
  21. 21.
    Creton C, Kramer EJ, Hui CY et al (1992) Macromolecules 25:3075. doi: 10.1021/ma00038a010 CrossRefGoogle Scholar
  22. 22.
    Eastwood EA, Dadmun MD (2002) Macromolecules 35:5069. doi: 10.1021/ma011701z CrossRefGoogle Scholar
  23. 23.
    Laurens C, Creton C, Loger L (2004) Macromolecules 37:6814. doi: 10.1021/ma0400259 CrossRefGoogle Scholar
  24. 24.
    Seo Y, Kim H (2008) Int J Mater Form 1:795CrossRefGoogle Scholar
  25. 25.
    Washiyama J, Kramer EJ, Hui CY (1993) Macromolecules 26:2928. doi: 10.1021/ma00063a043 CrossRefGoogle Scholar
  26. 26.
    Washiyama J, Kramer EJ, Creton CF et al (1994) Macromolecules 27:2019. doi: 10.1021/ma00086a007 CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Wunderlich B (1973) Macromolecular physics. Academic Press, New YorkGoogle Scholar
  29. 29.
    Mehta A, Gaur U, Wunderlich B (1978) J Polym Sci Polym Phys Ed 16:289. doi: 10.1002/pol.1978.180160209 CrossRefGoogle Scholar
  30. 30.
    Clark EJ, Hoffman JD (1984) Macromolecules 17:878. doi: 10.1021/ma00134a058 CrossRefGoogle Scholar
  31. 31.
    Runt J, Harrison IR (1980) In: Marton L, Marton C, Fava RA (eds) Methods of experimental physics: polymers, crystal structure and morphology. Academic Press, New YorkGoogle Scholar
  32. 32.
    Bershteæin VA, Egorov VM (1994) Differential scanning calorimetry of polymers: physics, chemistry, analysis, technology. Ellis Horwood, New YorkGoogle Scholar
  33. 33.
    Small PA (1953) J Appl Chem 3:71CrossRefGoogle Scholar
  34. 34.
    Hoy KL (1970) J Paint Technol 42:76Google Scholar
  35. 35.
    van Krevelen PW (1972) Properties of polymers. Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Coleman MM, Graf JF, Painter PC (1991) Specific interactions and the miscibility of polymer blends: practical guides for predicting & designing miscible polymer mixtures. Technomic Publishing Co, Lancaster, PAGoogle Scholar
  37. 37.
    Coleman MM, Painter PC (2006) Miscible polymer blends background and guide for calculations and design. DEStech Publications, Inc, Lancaster, PAGoogle Scholar
  38. 38.
    Benkoski JJ, Flores P, Kramer EJ (2003) Macromolecules 36:3289. doi: 10.1021/ma034013j CrossRefGoogle Scholar
  39. 39.
    Kim H, Rafailovich M, Sokolov J (2004) Polym Int 53:287. doi: 10.1002/pi.1367 CrossRefGoogle Scholar
  40. 40.
    Kanninen MF (1973) Int J Fract 9:83Google Scholar
  41. 41.
    Nielsen LE (1978) Predicting the properties of mixtures. Marcel Dekker, Inc., New YorkGoogle Scholar
  42. 42.
    Mallick PK (2008) Fiber-reinforced composites: materials, manufacturing, and design. CRC Press, Boca Raton, FLGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mehmet Dasdemir
    • 1
  • Benoit Maze
    • 2
  • Nagendra Anantharamaiah
    • 3
  • Behnam Pourdeyhimi
    • 2
  1. 1.Textile Engineering DepartmentUniversity of GaziantepGaziantepTurkey
  2. 2.The Nonwovens InstituteNorth Carolina State UniversityRaleighUSA
  3. 3.Hollingsworth & Vose CompanyFloydUSA

Personalised recommendations