Journal of Materials Science

, Volume 47, Issue 15, pp 5815–5822 | Cite as

Effects of pH and sintering temperature on the synthesis and electrical properties of the bilayered LaSr2Mn2O7 manganite prepared by the sol–gel process

  • M. H. Ehsani
  • M. E. Ghazi
  • P. Kameli


The bilayered LaSr2Mn2O7 manganite was synthesized by the sol–gel process at different pH values (3.5, 7, and 9.5) and different sintering temperatures (1553, 1623, and 1723 K) to investigate the effects of growth conditions upon the structural and electrical properties of the samples under investigation. X-Ray diffraction and FT-IR spectroscopy techniques confirm the phase formation for all samples. However, samples sintered at 1553, 1623, and 1723 K, and formed at pH = 7 are single phased having a tetragonal structure. Study of these single-phased samples indicates that with increase in the sintering temperature from 1553 to 1723 K, the average grain size increases from ~200 to ~1000 nm. To investigate the influence of grain size on the conduction mechanism, resistivity of the samples was measured as a function of temperature. The data obtained was analyzed by the adiabatic small polaron hopping model. These analyses show the influence of grain size on the parameters obtained by fitting the data by the above models.


Sinter Temperature Manganite Small Polaron Charge Order Mean Free Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ruddlesden SN, Popper P (1958) Acta Crystallogr 11:54CrossRefGoogle Scholar
  2. 2.
    Moritomo Y, Tomioka Y, Asamitsu A, Tokura Y, Matsui Y (1995) Phys Rev B 51:3297CrossRefGoogle Scholar
  3. 3.
    Jin S, Tiefel TH, MacCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Science 264:413CrossRefGoogle Scholar
  4. 4.
    Moritomo Y, Tomioka Y, Asamitsu A, Tokura Y, Matsui Y (1996) Nature (London) 380:141CrossRefGoogle Scholar
  5. 5.
    Argyriou DN, Mitchell JF, Potterm CD, Bader SD, Kleb R, Jorgenson JD (1997) Phys Rev B 55:R11965CrossRefGoogle Scholar
  6. 6.
    Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M, Tokura Y (1996) Science 274:1698CrossRefGoogle Scholar
  7. 7.
    Kimura T, Tokura Y (2000) Annu Rev Mater Sci 30:451CrossRefGoogle Scholar
  8. 8.
    Hirota K, Moritomo Y, Fujioka H, Kuota M, Yoshzawa H, Endoh Y (1998) Jpn J Phys 67:L3380CrossRefGoogle Scholar
  9. 9.
    Kubota M, Yoshizawa H, Moritomo Y, Fujioka H, Hirota K, Endoh Y (1999) J Phys Soc Jpn 68:2202CrossRefGoogle Scholar
  10. 10.
    Cao J, Rai RC, Brown S, Musfeldt JL, Tackett R, Lawes G, Wang YJ, Wei X, Apostu M, Suryanarayanan R, Revcolevschi A (2007) J Appl Phys Lett 91:021923Google Scholar
  11. 11.
    Ning W, Yang RF, Zhang XQ, Cheng ZH, Cheng ZH, Sun Y (2008) J Appl Phys 104:043910CrossRefGoogle Scholar
  12. 12.
    Rybicki D, Kapusta CZ, Takarz W, Stepankova H, Prochazka V, Haase J, Jirak Z, Ardroja DT, Mitchel JF (2008) J Phys Rev B78:184428Google Scholar
  13. 13.
    Yu G, Xu B, Xiong J, Liu X, Liu X, Liu L, Yuan S (2011) J Magn Magn Mater 323:1925CrossRefGoogle Scholar
  14. 14.
    Matvejeff M, Yoshimatsu K, Kumiyashira H, Oshima M, Lippmaa M (2009) J Appl Phys Lett 95:152110CrossRefGoogle Scholar
  15. 15.
    Takamura Y, Grepsad JK, Chopdekar RV, Suzuki Y, Marshall AF, Zheng H, Mitchel JF (2005) J Appl Phys Lett 87:142508CrossRefGoogle Scholar
  16. 16.
    Reddy YS, Prashanth Kumar V, Nagabhushanam E, Kistaiah P, Vishuvardhan Reddy C (2007) J Alloy Compd 440:6CrossRefGoogle Scholar
  17. 17.
    Wang A, Liu Y, Zhang Z, Long Y, Cao G (2004) Solid State Commun 130:293CrossRefGoogle Scholar
  18. 18.
    Yao XY, Yuan GL, Liu J-M, Yang Y, Liu ZG (2003) Mater Lett 57:3199CrossRefGoogle Scholar
  19. 19.
    Wang A, Liu T, Liu Y, Cao G (2005) Physica B 363:115CrossRefGoogle Scholar
  20. 20.
    Yang W, Chang Y, Huang S (2005) J Eur Ceram Soc 25:3611CrossRefGoogle Scholar
  21. 21.
    Wang J, Manivannan A, Wu N (2008) Thin Solid Films 517:582CrossRefGoogle Scholar
  22. 22.
    Yankin AM, Fedorova OM, Zvereva IA, Titova SG, Balakirev VF (2006) J Glass Chem 32:574CrossRefGoogle Scholar
  23. 23.
    Soleymani M, Moheb A, Joudaki E (2009) Cent Eur J Chem 7(4):809CrossRefGoogle Scholar
  24. 24.
    Nair S, Banerjee A (2004) Phys Rev B 70:104428CrossRefGoogle Scholar
  25. 25.
    Zhang RL, Zhao BC, Song WH, Ma YQ, Yang J, Sheng ZG, Dai JM, Son YP (2004) Phys Rev B 70:22448Google Scholar
  26. 26.
    Yaremchenko AA, Bannikov DO, Kovalevsky AV, Cherepanov VA, Kharton VV (2008) J Solid State Chem 181:3024CrossRefGoogle Scholar
  27. 27.
    Nagabhushana BM, Sreekanth Chakradhar RP, Ramesh KP, Prasad V, Shivakumara C, Chandrappa GT (2008) Physica B 403:3360CrossRefGoogle Scholar
  28. 28.
    Li K, Cheng R, Wang S, Zhang Y (1998) J Phys Condens Matter 10:4315CrossRefGoogle Scholar
  29. 29.
    Azarifar A, Yadav PA, Chawla AK, Jag JP, Patil SI, Chandra R, Ogale SB (2011) Adv Sci Lett 4:424CrossRefGoogle Scholar
  30. 30.
    Rostamnejadi A, Salamati H, Kameli P, Ahmadvand H (2009) J Magn Magn Mater 321:3126CrossRefGoogle Scholar
  31. 31.
    Zhang T, Li G, Qian T, Qu JF, Xiang XQ, Li XG (2006) J Appl Phys 100:094324CrossRefGoogle Scholar
  32. 32.
    Rubinstein MM (2000) J Appl Phys 87:5019CrossRefGoogle Scholar
  33. 33.
    Eshraghi M, Salamati H, Kameli P (2006) J Phys Condens Matter 18:8281CrossRefGoogle Scholar
  34. 34.
    Reiss G, Vancea J, Hoffmann H (1986) Phys Rev Lett 56:2100CrossRefGoogle Scholar
  35. 35.
    Zou X, Xiao G (2008) Phys Rev B 77:054417CrossRefGoogle Scholar
  36. 36.
    Chen XJ, Zhang CL, Gardner JS, Sarrao JL, Almasan CC (2002) Phys Rev B 67:094426CrossRefGoogle Scholar
  37. 37.
    Almasan CC, Chen XJ, Zhang CL, Gardner JS, Sarrao JL (2009) Physica B 329–333:811Google Scholar
  38. 38.
    Jung WH (2009) Physica B 404:1953CrossRefGoogle Scholar
  39. 39.
    Romero DB, Podobedov VB, Weber A, Rice JP, Mitchell JF, Sharma RP, Drew HD (1998) Phys Rev B 58:R14737CrossRefGoogle Scholar
  40. 40.
    Ishikawa T, Kimura T, Katsufuji T, Tokura Y (1998) Phys Rev B 57:R8079CrossRefGoogle Scholar
  41. 41.
    Venkataiah G, Krishna DC, Vithal M, Rao SS, Bhat SV, Prasad V, Subramanyam SV, Venugopal Reddy P (2005) Physica B 357:370CrossRefGoogle Scholar
  42. 42.
    Mollah S, Khan ZA, Shukla DK, Arshad M, Kumar R, Das A (2008) J Phys Chem Solids 69:1023CrossRefGoogle Scholar
  43. 43.
    Mott NF, Davis EA (1979) Electronic process in nano-crystalline materials. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsShahrood University of TechnologyShahroodIran
  2. 2.Department of PhysicsSemnan UniversitySemnanIran
  3. 3.Department of PhysicsIsfahan University of TechnologyIsfahanIran

Personalised recommendations