Journal of Materials Science

, Volume 47, Issue 15, pp 5743–5751 | Cite as

Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite

  • Xiaojun Shen
  • Jinlong Zhang
  • Baozhu Tian
  • Masakazu Anpo


Titanium dioxide with different ratios of anatase to brookite has been prepared by a facile hydrothermal method in the presence of tartaric acid. The resulting samples were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, UV–Vis diffuse reflectance spectra, and Brunauer–Emmett–Teller analysis. The contents of anatase and brookite in the TiO2 particles have been successfully controlled by simply adjusting molar ratio of tartaric acid to Ti in reaction system. The degradation of Rhodamine B in aqueous solutions reveals that the catalyst containing 78.7 % anatase and 21.3 % brookite has the highest photocatalytic activity. A proposed mechanism is discussed to interpret the evolution of the phases based on the effect of different C4H6O6/Ti molar ratios.


TiO2 Rutile Photocatalytic Activity Tartaric Acid High Photocatalytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has been supported by National Nature Science Foundation of China (20977030, 21173077), National Basic Research Program of China (2010CB732306), The Project of International Cooperation of the Ministry of Science and Technology of China (2011DFA50530), Science and Technology Commission of Shanghai Municipality (10520709900, 10JC1403900) and the Fundamental Research Funds for the Central Universities.


  1. 1.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  2. 2.
    Thompson TL, Yates JT (2006) Chem Rev 106:4428CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1CrossRefGoogle Scholar
  4. 4.
    Chen XB, Mao SS (2007) Chem Rev 107:2891CrossRefGoogle Scholar
  5. 5.
    Su X, Wu QL, Zhan X, Wu J, Wei SY, Guo ZH (2012) J Mater Sci 47:2519. doi: 10.1007/s10853-011-5974-x CrossRefGoogle Scholar
  6. 6.
    Zhu J, Zheng W, He B, Zhang JL, Anpo M (2004) J Mol Catal A 216:35CrossRefGoogle Scholar
  7. 7.
    Yu H, Tian BZ, Zhang JL (2011) Chem Eur J 17:5499CrossRefGoogle Scholar
  8. 8.
    Wang YW, Zhang LZ, Deng KJ, Chen XY, Zou ZG (2007) J Phys Chem C 111:2709CrossRefGoogle Scholar
  9. 9.
    Zhang J, Yan S, Fu L, Wang F, Yuan MQ, Luo GX, Xu Q, Wang X, Li C (2011) Chin J Catal 32:983CrossRefGoogle Scholar
  10. 10.
    Zhao B, Chen F, Huang QW, Zhang JL (2009) Chem Commun 34:5115CrossRefGoogle Scholar
  11. 11.
    Dambournet D, Belharouak I, Amine L (2010) Chem Mater 22:1173CrossRefGoogle Scholar
  12. 12.
    Dambournet D, Belharouak I, Ma JW, Amine K (2011) J Mater Chem 21:3085CrossRefGoogle Scholar
  13. 13.
    Zhang Q, Gao L, Guo J (2000) Appl Catal B 26:207CrossRefGoogle Scholar
  14. 14.
    Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S (2002) Angew Chem Int Ed 41:2811CrossRefGoogle Scholar
  15. 15.
    Kawahara T, Ozaka T, Iwasaki M, Tada H, Ito S (2003) J Colloid Interface Sci 267:377CrossRefGoogle Scholar
  16. 16.
    Yan MC, Chen F, Zhang JL, Anpo M (2005) J Phys Chem B 109:8673CrossRefGoogle Scholar
  17. 17.
    Li G, Gray KA (2007) Chem Mater 19:1143CrossRefGoogle Scholar
  18. 18.
    Cappelletti G, Bianchi CL, Ardizzone S (2008) Appl Catal B 78:193CrossRefGoogle Scholar
  19. 19.
    Wei F, Zeng H, Cui P, Peng S, Cheng T (2008) Chem Eng J 144:119CrossRefGoogle Scholar
  20. 20.
    Kandiel TA, Dillert R, Feldhoff A, Bahnemann DW (2010) J Phys Chem C 114:4909CrossRefGoogle Scholar
  21. 21.
    Shen XJ, Zhang JL, Tian BZ (2011) J Hazard Mater 192:651CrossRefGoogle Scholar
  22. 22.
    Xu H, Zhang LZ (2009) J Phys Chem C 113:1785CrossRefGoogle Scholar
  23. 23.
    Wei JP, Yao JF, Zhang XY, Zhu W, Wang H, Rhodes MJ (2007) Mater Lett 61:4610CrossRefGoogle Scholar
  24. 24.
    Paola AD, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M, Ceccato R, Palmisano L (2008) Colloid Surf A 317:366CrossRefGoogle Scholar
  25. 25.
    Yu JC, Zhang L, Yu JG (2002) Chem Mater 14:4647CrossRefGoogle Scholar
  26. 26.
    Yu JC, Yu JG, Ho WK, Zhang LZ (2001) Chem Commun 19:1942CrossRefGoogle Scholar
  27. 27.
    Ozawa T, Iwasaki M, Tada H, Akita T, Tanaka K, Ito S (2005) J Colloid Interface Sci 281:510CrossRefGoogle Scholar
  28. 28.
    Ardizzone S, Bianchi CL, Cappelletti G, Gialanella S, Pirola C, Ragaini V (2007) J Phys Chem C 111:13222CrossRefGoogle Scholar
  29. 29.
    Lopez T, Gomez R, Sanchez E, Tzompantzi F, Vera L (2001) J Sol-Gel Sci Technol 22:99CrossRefGoogle Scholar
  30. 30.
    Arnal P, Corriu R, Leclercq D, Mutin P, Vioux A (1996) J Mater Chem 6:1925CrossRefGoogle Scholar
  31. 31.
    Li JG, Ishigaki T, Sun XD (2007) J Phys Chem C 111:4969CrossRefGoogle Scholar
  32. 32.
    Paola AD, Bellardita M, Ceccato R, Palmisano L, Parrino F (2009) J Phys Chem C 113:15166CrossRefGoogle Scholar
  33. 33.
    Kandiel TA, Feldhoff A, Robben L, Dillert R, Bahnemann DW (2010) Chem Mater 22:2050CrossRefGoogle Scholar
  34. 34.
    Jiao YC, Zhao B, Chen F, Zhang JL (2011) CrystEngComm 13:4167CrossRefGoogle Scholar
  35. 35.
    Liu Y, Liu CY, Zhang ZY (2008) Chem Eng J 138:596CrossRefGoogle Scholar
  36. 36.
    Yin HB, Wada Y, Kitamura T, Sumida T, Hasegawa Y, Yanagida S (2002) J Mater Chem 12:378CrossRefGoogle Scholar
  37. 37.
    Zhang HZ, Banfield JF (2000) J Phys Chem B 104:3481CrossRefGoogle Scholar
  38. 38.
    Xu Q, Zhang J, Feng ZC, Ma Y, Wang X, Li C (2010) Chem Asian J 5:2158CrossRefGoogle Scholar
  39. 39.
    Zheng YQ, Shi E, Cui SX, Li WJ, Hu XF (2000) J Am Ceram Soc 83:2634CrossRefGoogle Scholar
  40. 40.
    Koffyberg FP, Dwight K, Wold A (1979) Solid State Commun 30:433CrossRefGoogle Scholar
  41. 41.
    Serpone N, Lawless D, Khairutidinov R (1995) J Phys Chem 99:16646CrossRefGoogle Scholar
  42. 42.
    Hu WB, Li LP, Li GS, Tang CL, Sun L (2009) Cryst Growth Des 9:3676CrossRefGoogle Scholar
  43. 43.
    Cheng H, Ma J, Zhao Z, Qi L (1995) Chem Mater 7:663CrossRefGoogle Scholar
  44. 44.
    Constable EC (1996) Metals and ligand reactivity: an introduction to the organic chemistry of metal complexes. VCH Publishers, New York, p 7Google Scholar
  45. 45.
    Li Y, Lee NH, Hwang DS, Song JS, Lee EG, Kim SJ (2004) Langmuir 20:10838CrossRefGoogle Scholar
  46. 46.
    Li JM, Yu YX, Chen QW, Li JJ, Xu DS (2010) Cryst Growth Des 10:2111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiaojun Shen
    • 1
  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Masakazu Anpo
    • 2
  1. 1.Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan

Personalised recommendations