Skip to main content
Log in

Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium dioxide with different ratios of anatase to brookite has been prepared by a facile hydrothermal method in the presence of tartaric acid. The resulting samples were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, UV–Vis diffuse reflectance spectra, and Brunauer–Emmett–Teller analysis. The contents of anatase and brookite in the TiO2 particles have been successfully controlled by simply adjusting molar ratio of tartaric acid to Ti in reaction system. The degradation of Rhodamine B in aqueous solutions reveals that the catalyst containing 78.7 % anatase and 21.3 % brookite has the highest photocatalytic activity. A proposed mechanism is discussed to interpret the evolution of the phases based on the effect of different C4H6O6/Ti molar ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  2. Thompson TL, Yates JT (2006) Chem Rev 106:4428

    Article  CAS  Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1

    Article  CAS  Google Scholar 

  4. Chen XB, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  Google Scholar 

  5. Su X, Wu QL, Zhan X, Wu J, Wei SY, Guo ZH (2012) J Mater Sci 47:2519. doi:10.1007/s10853-011-5974-x

    Article  CAS  Google Scholar 

  6. Zhu J, Zheng W, He B, Zhang JL, Anpo M (2004) J Mol Catal A 216:35

    Article  CAS  Google Scholar 

  7. Yu H, Tian BZ, Zhang JL (2011) Chem Eur J 17:5499

    Article  CAS  Google Scholar 

  8. Wang YW, Zhang LZ, Deng KJ, Chen XY, Zou ZG (2007) J Phys Chem C 111:2709

    Article  CAS  Google Scholar 

  9. Zhang J, Yan S, Fu L, Wang F, Yuan MQ, Luo GX, Xu Q, Wang X, Li C (2011) Chin J Catal 32:983

    Article  CAS  Google Scholar 

  10. Zhao B, Chen F, Huang QW, Zhang JL (2009) Chem Commun 34:5115

    Article  Google Scholar 

  11. Dambournet D, Belharouak I, Amine L (2010) Chem Mater 22:1173

    Article  CAS  Google Scholar 

  12. Dambournet D, Belharouak I, Ma JW, Amine K (2011) J Mater Chem 21:3085

    Article  CAS  Google Scholar 

  13. Zhang Q, Gao L, Guo J (2000) Appl Catal B 26:207

    Article  CAS  Google Scholar 

  14. Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S (2002) Angew Chem Int Ed 41:2811

    Article  CAS  Google Scholar 

  15. Kawahara T, Ozaka T, Iwasaki M, Tada H, Ito S (2003) J Colloid Interface Sci 267:377

    Article  CAS  Google Scholar 

  16. Yan MC, Chen F, Zhang JL, Anpo M (2005) J Phys Chem B 109:8673

    Article  CAS  Google Scholar 

  17. Li G, Gray KA (2007) Chem Mater 19:1143

    Article  CAS  Google Scholar 

  18. Cappelletti G, Bianchi CL, Ardizzone S (2008) Appl Catal B 78:193

    Article  CAS  Google Scholar 

  19. Wei F, Zeng H, Cui P, Peng S, Cheng T (2008) Chem Eng J 144:119

    Article  CAS  Google Scholar 

  20. Kandiel TA, Dillert R, Feldhoff A, Bahnemann DW (2010) J Phys Chem C 114:4909

    Article  CAS  Google Scholar 

  21. Shen XJ, Zhang JL, Tian BZ (2011) J Hazard Mater 192:651

    Article  CAS  Google Scholar 

  22. Xu H, Zhang LZ (2009) J Phys Chem C 113:1785

    Article  CAS  Google Scholar 

  23. Wei JP, Yao JF, Zhang XY, Zhu W, Wang H, Rhodes MJ (2007) Mater Lett 61:4610

    Article  CAS  Google Scholar 

  24. Paola AD, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M, Ceccato R, Palmisano L (2008) Colloid Surf A 317:366

    Article  Google Scholar 

  25. Yu JC, Zhang L, Yu JG (2002) Chem Mater 14:4647

    Article  CAS  Google Scholar 

  26. Yu JC, Yu JG, Ho WK, Zhang LZ (2001) Chem Commun 19:1942

    Article  Google Scholar 

  27. Ozawa T, Iwasaki M, Tada H, Akita T, Tanaka K, Ito S (2005) J Colloid Interface Sci 281:510

    Article  CAS  Google Scholar 

  28. Ardizzone S, Bianchi CL, Cappelletti G, Gialanella S, Pirola C, Ragaini V (2007) J Phys Chem C 111:13222

    Article  CAS  Google Scholar 

  29. Lopez T, Gomez R, Sanchez E, Tzompantzi F, Vera L (2001) J Sol-Gel Sci Technol 22:99

    Article  CAS  Google Scholar 

  30. Arnal P, Corriu R, Leclercq D, Mutin P, Vioux A (1996) J Mater Chem 6:1925

    Article  CAS  Google Scholar 

  31. Li JG, Ishigaki T, Sun XD (2007) J Phys Chem C 111:4969

    Article  CAS  Google Scholar 

  32. Paola AD, Bellardita M, Ceccato R, Palmisano L, Parrino F (2009) J Phys Chem C 113:15166

    Article  Google Scholar 

  33. Kandiel TA, Feldhoff A, Robben L, Dillert R, Bahnemann DW (2010) Chem Mater 22:2050

    Article  CAS  Google Scholar 

  34. Jiao YC, Zhao B, Chen F, Zhang JL (2011) CrystEngComm 13:4167

    Article  CAS  Google Scholar 

  35. Liu Y, Liu CY, Zhang ZY (2008) Chem Eng J 138:596

    Article  CAS  Google Scholar 

  36. Yin HB, Wada Y, Kitamura T, Sumida T, Hasegawa Y, Yanagida S (2002) J Mater Chem 12:378

    Article  CAS  Google Scholar 

  37. Zhang HZ, Banfield JF (2000) J Phys Chem B 104:3481

    Article  CAS  Google Scholar 

  38. Xu Q, Zhang J, Feng ZC, Ma Y, Wang X, Li C (2010) Chem Asian J 5:2158

    Article  CAS  Google Scholar 

  39. Zheng YQ, Shi E, Cui SX, Li WJ, Hu XF (2000) J Am Ceram Soc 83:2634

    Article  CAS  Google Scholar 

  40. Koffyberg FP, Dwight K, Wold A (1979) Solid State Commun 30:433

    Article  CAS  Google Scholar 

  41. Serpone N, Lawless D, Khairutidinov R (1995) J Phys Chem 99:16646

    Article  CAS  Google Scholar 

  42. Hu WB, Li LP, Li GS, Tang CL, Sun L (2009) Cryst Growth Des 9:3676

    Article  CAS  Google Scholar 

  43. Cheng H, Ma J, Zhao Z, Qi L (1995) Chem Mater 7:663

    Article  CAS  Google Scholar 

  44. Constable EC (1996) Metals and ligand reactivity: an introduction to the organic chemistry of metal complexes. VCH Publishers, New York, p 7

    Google Scholar 

  45. Li Y, Lee NH, Hwang DS, Song JS, Lee EG, Kim SJ (2004) Langmuir 20:10838

    Article  CAS  Google Scholar 

  46. Li JM, Yu YX, Chen QW, Li JJ, Xu DS (2010) Cryst Growth Des 10:2111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by National Nature Science Foundation of China (20977030, 21173077), National Basic Research Program of China (2010CB732306), The Project of International Cooperation of the Ministry of Science and Technology of China (2011DFA50530), Science and Technology Commission of Shanghai Municipality (10520709900, 10JC1403900) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Zhang, J., Tian, B. et al. Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite. J Mater Sci 47, 5743–5751 (2012). https://doi.org/10.1007/s10853-012-6465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6465-4

Keywords

Navigation