Skip to main content
Log in

Dilatometry: a powerful tool for the study of defects in ultrafine-grained metals

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Vacancies, dislocations, and interfaces are structural defects that are deliberately introduced into solids during grain refinement processes based on severe plastic deformation (SPD). Specific combinations of these defects determine the improved mechanical properties of the obtained ultrafine-grained materials. High-precision, non-equilibrium dilatometry, i.e., measurement of the irreversible macroscopic length change upon defect annealing, provides a powerful technique for the characterization and the study of the kinetics of these defects. It is applied to determine absolute concentrations of vacancies, to characterize dislocation processes, and to assess grain boundary excess volume in pure, FCC and BCC ultrafine-grained metals processed by SPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Feder R, Nowick AS (1958) Phys Rev 109:1959

    Article  CAS  Google Scholar 

  2. Simmons RO, Balluffi RW (1960) Phys Rev 117:52

    Article  CAS  Google Scholar 

  3. Simmons RO, Balluffi RW (1960) Phys Rev 119:600

    Article  CAS  Google Scholar 

  4. Simmons RO, Balluffi RW (1962) Phys Rev 125:862

    Article  Google Scholar 

  5. Simmons RO, Balluffi RW (1963) Phys Rev 129:1533

    Article  CAS  Google Scholar 

  6. Hehenkamp Th, Berger W, Kluin J-E, Lüdecke Ch, Wolff J (1992) Phys Rev B 45:1998

    Article  CAS  Google Scholar 

  7. Sprengel W, Müller MA, Schaefer H-E (2002) In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds: principles and practice, vol 3. Wiley, New York

    Google Scholar 

  8. Van Ommen AH, de Miranda J (1981) Philos Mag A 43:387

    Article  Google Scholar 

  9. Schaefer H-E, Frenner K, Würschum R (1999) Phys Rev Lett 82:948

    Article  CAS  Google Scholar 

  10. Ye F, Sprengel W, Wunderlich RK, Fecht HJ, Schaefer H-E (2007) Proc Natl Acad Sci 104:12962

    Article  CAS  Google Scholar 

  11. Pippan R, Scheriau S, Taylor A, Hafok M, Hohenwarter A, Bachmaier A (2010) Annu Rev Mater Res 40:319

    Article  CAS  Google Scholar 

  12. Oberdorfer B, Lorenzoni B, Unger K, Sprengel W, Zehetbauer M, Pippan R, Würschum R (2010) Scripta Mater 63:452

    Article  CAS  Google Scholar 

  13. Schafler E, Steiner G, Korznikova E, Kerber M, Zehetbauer M (2005) Mater Sci Eng A 410–411:169

    Google Scholar 

  14. Setman D, Schafler E, Korznikova E, Zehetbauer MJ (2008) Mater Sci Eng A 493:116

    Article  Google Scholar 

  15. Cao W, Gu C, Pereloma E, Davies C (2008) Mater Sci Eng A 492:74

    Article  Google Scholar 

  16. Ungar T, Schafler E, Hanak P, Bernstorff S, Zehetbauer M (2007) Mater Sci Eng A 462:398

    Article  Google Scholar 

  17. Zehetbauer M, Kohout J, Schafler E, Sachslehner F, Dubravina A (2004) J Alloys Compd 378:329

    Article  CAS  Google Scholar 

  18. Wolf D, Merkle K (1992) In: Wolf D, Yip S (eds) Materials interfaces: atomic-level structure and properties. Chapman & Hall, London, p 87

  19. Steyskal E-M, Oberdorfer B, Sprengel W, Zehetbauer M, Pippan R, Würschum R (2012) Phys Rev Lett 108:055504

    Article  Google Scholar 

  20. Ullmaier H (ed) (1991) Atomic defects in metals Landolt–Börnstein, new series/condensed matter, vol 23. Springer, Berlin

  21. Cahn RW, Haasen P (eds) (1996) Physical metallurgy, 4th edn. North Holland, Amsterdam

    Google Scholar 

  22. Henderson D (1079) J Non-Cryst Solids 30:301

    Article  Google Scholar 

  23. Oberdorfer B, Steyskal E-M, Sprengel W, Pippan R, Zehetbauer M, Puff W, Würschum R (2011) J Alloys Compd 509S:S309

    Article  Google Scholar 

  24. Oberdorfer B, Steyskal E-M, Sprengel W, Puff W, Pikart P, Hugenschmidt C, Zehetbauer M, Pippan R, Würschum R (2010) Phys Rev Lett 105:146101

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by Austrian Science Fund (FWF): P21009-N20 is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Sprengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprengel, W., Oberdorfer, B., Steyskal, EM. et al. Dilatometry: a powerful tool for the study of defects in ultrafine-grained metals. J Mater Sci 47, 7921–7925 (2012). https://doi.org/10.1007/s10853-012-6460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6460-9

Keywords

Navigation