Journal of Materials Science

, Volume 47, Issue 14, pp 5529–5534 | Cite as

Wide band-gap investigation of modulated BeZnO layers via photocurrent measurement

  • J. H. Yu
  • J. H. Kim
  • H. J. Yang
  • T. S. Kim
  • T. S. Jeong
  • C. J. Youn
  • K. J. Hong


We grew modulated BeZnO layers by hybrid plasma-assisted molecular-beam epitaxy/electron-beam deposition. A wide band-gap investigation of the modulated Be x Zn1−x O by means of photocurrent (PC) spectroscopy was conducted. The band-gap energy was directly acquired from the wavelength of the PC peak, caused by the band-to-band transition. By increasing x, which was the rate of the Be elements, the optical band-gap energy was empirically fitted by E BeZnO(x) = 6.32(x–1)x + 7.305x + 3.295. We expect that this finding can open new possibilities for wide band-gap engineering of BeZnO layers, which can be utilized as barrier layers in active layers consisting of ZnO/BeZnO quantum well structures and solar-blind ultraviolet photodetectors.


Effusion Cell Quantum Well Structure Potential Barrier Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0031400).


  1. 1.
    Wei ZP, Lu YM, Shen DZ, Zhang ZZ, Yao B, Li BH, Zhang JY, Zhao DX, Fan XW, Tang ZK (2008) J Korean Phys Soc 53:3038CrossRefGoogle Scholar
  2. 2.
    Ryu YR, Lubguban JA, Lee TS, White HW, Jeong TS, Youn CJ, Kim BJ (2007) Appl Phys Lett 90:131115CrossRefGoogle Scholar
  3. 3.
    Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T, Segawa Y (1998) Appl Phys Lett 72:2466CrossRefGoogle Scholar
  4. 4.
    Choopun S, Vispute RD, Yang W, Sharma RP, Venkatesan T, Shen H (2002) Appl Phys Lett 80:1529CrossRefGoogle Scholar
  5. 5.
    Ryu YR, Lee TS, Lubguban JA, Corman AB, White HW, Leem JH, Han MS, Park YS, Youn CJ, Kim WJ (2006) Appl Phys Lett 88:052103CrossRefGoogle Scholar
  6. 6.
    Waag A, Fischer F, Lugauer HJ, Litz Th, Laubender J, Lenz U, Zehnder U, Ossau W, Gerhardt T, Möller M, Landwehr G (1996) J Appl Phys 80:792CrossRefGoogle Scholar
  7. 7.
    Van Vechten JA, Bergstresser TK (1970) Phys Rev B 1:3351CrossRefGoogle Scholar
  8. 8.
    Ponomareva IA, Serov AY, Bodnar IV (2007) Phys Solid State 49:23CrossRefGoogle Scholar
  9. 9.
    Neumann H, Hörig W, Reccius E, Möller W, Kühn G (1978) Solid State Commun 27:449CrossRefGoogle Scholar
  10. 10.
    Ohe S, Takata S, Wakita K, Yamamoto N (2000) Jpn J Appl Phys 39:118Google Scholar
  11. 11.
    Quintero M, Guerrero E, Tovar R, Morocoima M, Grima P, Cadenas R (1996) J Phys Chem Solids 57:271CrossRefGoogle Scholar
  12. 12.
    Yu JH, Park DS, Kim JH, Jeong TS, Youn CJ, Hong KJ (2010) J Mater Sci 45:130. doi: 10.1007/s10853-009-3902-0 CrossRefGoogle Scholar
  13. 13.
    Lennon C, Tapia RB, Kodama R, Chang Y, Sivananthan S, Deshpande M (2009) J Electron Mater 38:1568CrossRefGoogle Scholar
  14. 14.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy, 2nd edn. Perking-Elmer Corporation, MinnesotaGoogle Scholar
  15. 15.
    Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wang LS (2000) Appl Surf Sci 158:134CrossRefGoogle Scholar
  16. 16.
    You SH, Hong KJ, Jeong TS, Youn CJ, Park JS, Shin DC, Moon JD (2003) J Cryst Growth 256:116CrossRefGoogle Scholar
  17. 17.
    Klick CC (1953) Phys Rev 89:274CrossRefGoogle Scholar
  18. 18.
    Ding SF, Fan GH, Li ST, Chen K, Xiao B (2007) Phys B 394:127CrossRefGoogle Scholar
  19. 19.
    Khoshman JM, Ingram DC, Kordesch ME (2008) Appl Phys Lett 92:091902CrossRefGoogle Scholar
  20. 20.
    Duan Y, Shi H, Qin L (2008) Phys Lett A 372:2930CrossRefGoogle Scholar
  21. 21.
    Shi H, Duan Y (2008) Eur Phys J B 66:439CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • J. H. Yu
    • 1
  • J. H. Kim
    • 1
  • H. J. Yang
    • 1
  • T. S. Kim
    • 1
  • T. S. Jeong
    • 1
  • C. J. Youn
    • 1
  • K. J. Hong
    • 2
  1. 1.Semiconductor Physics Research Center (SPRC), School of Semiconductor and Chemical EngineeringChonbuk National UniversityJeonjuSouth Korea
  2. 2.Department of PhysicsChosun UniversityGwangjuSouth Korea

Personalised recommendations