Skip to main content
Log in

Wide band-gap investigation of modulated BeZnO layers via photocurrent measurement

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We grew modulated BeZnO layers by hybrid plasma-assisted molecular-beam epitaxy/electron-beam deposition. A wide band-gap investigation of the modulated Be x Zn1−x O by means of photocurrent (PC) spectroscopy was conducted. The band-gap energy was directly acquired from the wavelength of the PC peak, caused by the band-to-band transition. By increasing x, which was the rate of the Be elements, the optical band-gap energy was empirically fitted by E BeZnO(x) = 6.32(x–1)x + 7.305x + 3.295. We expect that this finding can open new possibilities for wide band-gap engineering of BeZnO layers, which can be utilized as barrier layers in active layers consisting of ZnO/BeZnO quantum well structures and solar-blind ultraviolet photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wei ZP, Lu YM, Shen DZ, Zhang ZZ, Yao B, Li BH, Zhang JY, Zhao DX, Fan XW, Tang ZK (2008) J Korean Phys Soc 53:3038

    Article  CAS  Google Scholar 

  2. Ryu YR, Lubguban JA, Lee TS, White HW, Jeong TS, Youn CJ, Kim BJ (2007) Appl Phys Lett 90:131115

    Article  Google Scholar 

  3. Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T, Segawa Y (1998) Appl Phys Lett 72:2466

    Article  CAS  Google Scholar 

  4. Choopun S, Vispute RD, Yang W, Sharma RP, Venkatesan T, Shen H (2002) Appl Phys Lett 80:1529

    Article  CAS  Google Scholar 

  5. Ryu YR, Lee TS, Lubguban JA, Corman AB, White HW, Leem JH, Han MS, Park YS, Youn CJ, Kim WJ (2006) Appl Phys Lett 88:052103

    Article  Google Scholar 

  6. Waag A, Fischer F, Lugauer HJ, Litz Th, Laubender J, Lenz U, Zehnder U, Ossau W, Gerhardt T, Möller M, Landwehr G (1996) J Appl Phys 80:792

    Article  CAS  Google Scholar 

  7. Van Vechten JA, Bergstresser TK (1970) Phys Rev B 1:3351

    Article  Google Scholar 

  8. Ponomareva IA, Serov AY, Bodnar IV (2007) Phys Solid State 49:23

    Article  CAS  Google Scholar 

  9. Neumann H, Hörig W, Reccius E, Möller W, Kühn G (1978) Solid State Commun 27:449

    Article  CAS  Google Scholar 

  10. Ohe S, Takata S, Wakita K, Yamamoto N (2000) Jpn J Appl Phys 39:118

    CAS  Google Scholar 

  11. Quintero M, Guerrero E, Tovar R, Morocoima M, Grima P, Cadenas R (1996) J Phys Chem Solids 57:271

    Article  CAS  Google Scholar 

  12. Yu JH, Park DS, Kim JH, Jeong TS, Youn CJ, Hong KJ (2010) J Mater Sci 45:130. doi:10.1007/s10853-009-3902-0

    Article  CAS  Google Scholar 

  13. Lennon C, Tapia RB, Kodama R, Chang Y, Sivananthan S, Deshpande M (2009) J Electron Mater 38:1568

    Article  CAS  Google Scholar 

  14. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy, 2nd edn. Perking-Elmer Corporation, Minnesota

    Google Scholar 

  15. Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wang LS (2000) Appl Surf Sci 158:134

    Article  CAS  Google Scholar 

  16. You SH, Hong KJ, Jeong TS, Youn CJ, Park JS, Shin DC, Moon JD (2003) J Cryst Growth 256:116

    Article  CAS  Google Scholar 

  17. Klick CC (1953) Phys Rev 89:274

    Article  CAS  Google Scholar 

  18. Ding SF, Fan GH, Li ST, Chen K, Xiao B (2007) Phys B 394:127

    Article  CAS  Google Scholar 

  19. Khoshman JM, Ingram DC, Kordesch ME (2008) Appl Phys Lett 92:091902

    Article  Google Scholar 

  20. Duan Y, Shi H, Qin L (2008) Phys Lett A 372:2930

    Article  CAS  Google Scholar 

  21. Shi H, Duan Y (2008) Eur Phys J B 66:439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0031400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Youn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J.H., Kim, J.H., Yang, H.J. et al. Wide band-gap investigation of modulated BeZnO layers via photocurrent measurement. J Mater Sci 47, 5529–5534 (2012). https://doi.org/10.1007/s10853-012-6445-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6445-8

Keywords

Navigation