Journal of Materials Science

, Volume 47, Issue 14, pp 5517–5523 | Cite as

Toughening mechanisms in poly(lactic) acid reinforced with TEMPO-oxidized cellulose

  • Mindaugas Bulota
  • Mark Hughes


The mechanical properties of poly(lactic) acid (PLA) were modified by the addition of small amounts of cellulose, prepared from the mechanical disintegration of birch Kraft pulp following oxidation of the primary alcohol groups mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). The TEMPO-fibrillated cellulose (TOFC) was subsequently acetylated in acetic anhydride to degrees of substitution (DS) of 0.4 and 0.6 to enhance the compatibility between the polar cellulose and the non-polar polymer. The fracture behaviour of tensile specimens prepared from PLA film containing weight fractions of 1, 2 and 5 % of TOFC was considerably altered. The strain-to-failure of PLA modified by the incorporation of 1 wt% TOFC acetylated to a DS of 0.6 increased approximately 25-fold and the work of fracture by order of magnitude. The increase in the fracture properties were, nevertheless, accompanied by a reduction in Young’s modulus of around 60 % at both DS levels. At the higher TOFC addition levels, no toughening was observed, with the strains-to-failure and works of fracture both decreasing compared to pure PLA film. On the other hand, the Young’s modulus and tensile strength of films prepared from PLA incorporating TOFC esterified to a DS of 0.6 was found to be greater than that of pure PLA film. Possible mechanisms explaining the increase in toughness at 1 wt% are postulated.


Bacterial Cellulose Kenaf Cold Drawing Sodium Carboxylate Primary Alcohol Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Academy of Finland (decision number 127609) for financial support. The authors are also grateful to Rita Hatakka for recording the FT-IR spectra and many thanks are due to Tuomas Hänninen for providing TEMPO-oxidized fibrillated cellulose.

Supplementary material

10853_2012_6443_MOESM1_ESM.doc (47 kb)
Supplementary material 1 (DOC 47 kb)


  1. 1.
    Grijpma DW, Penning JP, Pennings AJ (1994) Colloid Polym Sci 272:1068CrossRefGoogle Scholar
  2. 2.
    Turbak AF, Snyder FW, Sandberg KR (1983) J Appl Polym Sci: Appl Polym Symp 37:815Google Scholar
  3. 3.
    Veigel S, Müller U, Keckes J et al (2011) Cellulose 18:1227CrossRefGoogle Scholar
  4. 4.
    Gabr MH, Elrahman MA, Okubo K et al (2010) Compos Struct 92:1999CrossRefGoogle Scholar
  5. 5.
    Gabr M, Elrahman M, Okubo K et al (2010) J Mater Sci 45:3841. doi: 10.1007/s10853-010-4439-y CrossRefGoogle Scholar
  6. 6.
    Gabr MH, Elrahman MA, Okubo K et al (2010) Compos A 41:1263CrossRefGoogle Scholar
  7. 7.
    Todo M, Park S, Takayama T et al (2007) Eng Fract Mech 74:1872CrossRefGoogle Scholar
  8. 8.
    Bhardwaj R, Mohanty AK (2007) Biomacromolecules 8:2476CrossRefGoogle Scholar
  9. 9.
    Young RJ, Lovell PA (1991) Introduction to polymers, 2nd edn. Chapman & Hall, CambridgeGoogle Scholar
  10. 10.
    Sanchez-Garcia M, Lagaron J (2010) Cellulose 17:987CrossRefGoogle Scholar
  11. 11.
    Okubo K, Fujii T, Thostenson ET (2009) Compost A 40:469CrossRefGoogle Scholar
  12. 12.
    Pei A, Zhou Q, Berglund LA (2010) Compos Sci Technol 70:815CrossRefGoogle Scholar
  13. 13.
    Tome LC, Pinto RJB, Trovatti E et al (2011) Green Chem 13:419CrossRefGoogle Scholar
  14. 14.
    Jonoobi M, Harun J, Mathew AP et al (2010) Compos Sci Technol 70:1742CrossRefGoogle Scholar
  15. 15.
    Toepperwein GN, de Pablo JJ (2011) Macromolecules 44:5498CrossRefGoogle Scholar
  16. 16.
    Bagheri R, Pearson RA (1996) Polymer 37:4529CrossRefGoogle Scholar
  17. 17.
    Mahajan DK, Singh B, Basu S (2010) Phys Rev E 82:011803CrossRefGoogle Scholar
  18. 18.
    Papakonstantopoulos GJ, Yoshimoto K, Doxastakis M et al (2005) Phys Rev E 72:031801CrossRefGoogle Scholar
  19. 19.
    Saito T, Nishiyama Y, Putaux J et al (2006) Biomacromolecules 7:1687CrossRefGoogle Scholar
  20. 20.
    Isogai A, Saito T, Fukuzumi H (2011) Nanoscale 3:71CrossRefGoogle Scholar
  21. 21.
    Heux L, Chauve G, Bonini C (2000) Langmuir 16:8210CrossRefGoogle Scholar
  22. 22.
    Ljungberg N, Bonini C, Bortolussi F et al (2005) Biomacromolecules 6:2732CrossRefGoogle Scholar
  23. 23.
    Murray TF, Staud CJ, Gray HL (1931) Ind Eng Chem Anal Ed 3:269CrossRefGoogle Scholar
  24. 24.
    Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Biomacromolecules 11:454CrossRefGoogle Scholar
  25. 25.
    Fordyce CR, Genung LB, Pile MA (1946) Ind Eng Chem Anal Ed 18:547CrossRefGoogle Scholar
  26. 26.
    Sassi J, Chanzy H (1995) Cellulose 2:111CrossRefGoogle Scholar
  27. 27.
    Lee K, Quero F, Blaker J et al (2011) Cellulose 18:595CrossRefGoogle Scholar
  28. 28.
    Adebajo MO, Frost RL (2004) Spectrochim Acta A 60:449CrossRefGoogle Scholar
  29. 29.
    Guo Y, Wu P (2008) Carbohydr Polym 74:509CrossRefGoogle Scholar
  30. 30.
    Kondo T, Sawatari C (1996) Polymer 37:393CrossRefGoogle Scholar
  31. 31.
    Colom X, Carrillo F (2002) Eur Polym J 38:2225CrossRefGoogle Scholar
  32. 32.
    Fukuzumi H, Saito T, Okita Y et al (2010) Polym Degrad Stab 95:1502CrossRefGoogle Scholar
  33. 33.
    Bulota M, Kreitsmann K, Hughes M et al. (2012) Accepted for publication in J Appl Polym SciGoogle Scholar
  34. 34.
    Bulota M, Tanpichai S, Hughes M et al (2011) ACS Appl Mater Interfaces 4:337Google Scholar
  35. 35.
    Lee J, Zhang Q, Emrick T et al (2006) Macromolecules 39:7392CrossRefGoogle Scholar
  36. 36.
    Bagheri R, Pearson RA (2000) Polymer 41:269CrossRefGoogle Scholar
  37. 37.
    Henriksson M, Berglund LA, Isaksson P et al (2008) Biomacromolecules 9:1579CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Forest Products Technology, School of Chemical TechnologyAalto UniversityAaltoFinland

Personalised recommendations