Skip to main content
Log in

Toughening mechanisms in poly(lactic) acid reinforced with TEMPO-oxidized cellulose

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties of poly(lactic) acid (PLA) were modified by the addition of small amounts of cellulose, prepared from the mechanical disintegration of birch Kraft pulp following oxidation of the primary alcohol groups mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). The TEMPO-fibrillated cellulose (TOFC) was subsequently acetylated in acetic anhydride to degrees of substitution (DS) of 0.4 and 0.6 to enhance the compatibility between the polar cellulose and the non-polar polymer. The fracture behaviour of tensile specimens prepared from PLA film containing weight fractions of 1, 2 and 5 % of TOFC was considerably altered. The strain-to-failure of PLA modified by the incorporation of 1 wt% TOFC acetylated to a DS of 0.6 increased approximately 25-fold and the work of fracture by order of magnitude. The increase in the fracture properties were, nevertheless, accompanied by a reduction in Young’s modulus of around 60 % at both DS levels. At the higher TOFC addition levels, no toughening was observed, with the strains-to-failure and works of fracture both decreasing compared to pure PLA film. On the other hand, the Young’s modulus and tensile strength of films prepared from PLA incorporating TOFC esterified to a DS of 0.6 was found to be greater than that of pure PLA film. Possible mechanisms explaining the increase in toughness at 1 wt% are postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grijpma DW, Penning JP, Pennings AJ (1994) Colloid Polym Sci 272:1068

    Article  CAS  Google Scholar 

  2. Turbak AF, Snyder FW, Sandberg KR (1983) J Appl Polym Sci: Appl Polym Symp 37:815

    CAS  Google Scholar 

  3. Veigel S, Müller U, Keckes J et al (2011) Cellulose 18:1227

    Article  CAS  Google Scholar 

  4. Gabr MH, Elrahman MA, Okubo K et al (2010) Compos Struct 92:1999

    Article  Google Scholar 

  5. Gabr M, Elrahman M, Okubo K et al (2010) J Mater Sci 45:3841. doi:10.1007/s10853-010-4439-y

    Article  CAS  Google Scholar 

  6. Gabr MH, Elrahman MA, Okubo K et al (2010) Compos A 41:1263

    Article  Google Scholar 

  7. Todo M, Park S, Takayama T et al (2007) Eng Fract Mech 74:1872

    Article  Google Scholar 

  8. Bhardwaj R, Mohanty AK (2007) Biomacromolecules 8:2476

    Article  CAS  Google Scholar 

  9. Young RJ, Lovell PA (1991) Introduction to polymers, 2nd edn. Chapman & Hall, Cambridge

    Google Scholar 

  10. Sanchez-Garcia M, Lagaron J (2010) Cellulose 17:987

    Article  CAS  Google Scholar 

  11. Okubo K, Fujii T, Thostenson ET (2009) Compost A 40:469

    Article  Google Scholar 

  12. Pei A, Zhou Q, Berglund LA (2010) Compos Sci Technol 70:815

    Article  CAS  Google Scholar 

  13. Tome LC, Pinto RJB, Trovatti E et al (2011) Green Chem 13:419

    Article  CAS  Google Scholar 

  14. Jonoobi M, Harun J, Mathew AP et al (2010) Compos Sci Technol 70:1742

    Article  CAS  Google Scholar 

  15. Toepperwein GN, de Pablo JJ (2011) Macromolecules 44:5498

    Article  CAS  Google Scholar 

  16. Bagheri R, Pearson RA (1996) Polymer 37:4529

    Article  CAS  Google Scholar 

  17. Mahajan DK, Singh B, Basu S (2010) Phys Rev E 82:011803

    Article  Google Scholar 

  18. Papakonstantopoulos GJ, Yoshimoto K, Doxastakis M et al (2005) Phys Rev E 72:031801

    Article  Google Scholar 

  19. Saito T, Nishiyama Y, Putaux J et al (2006) Biomacromolecules 7:1687

    Article  CAS  Google Scholar 

  20. Isogai A, Saito T, Fukuzumi H (2011) Nanoscale 3:71

    Article  CAS  Google Scholar 

  21. Heux L, Chauve G, Bonini C (2000) Langmuir 16:8210

    Article  CAS  Google Scholar 

  22. Ljungberg N, Bonini C, Bortolussi F et al (2005) Biomacromolecules 6:2732

    Article  CAS  Google Scholar 

  23. Murray TF, Staud CJ, Gray HL (1931) Ind Eng Chem Anal Ed 3:269

    Article  CAS  Google Scholar 

  24. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Biomacromolecules 11:454

    Article  CAS  Google Scholar 

  25. Fordyce CR, Genung LB, Pile MA (1946) Ind Eng Chem Anal Ed 18:547

    Article  CAS  Google Scholar 

  26. Sassi J, Chanzy H (1995) Cellulose 2:111

    Article  CAS  Google Scholar 

  27. Lee K, Quero F, Blaker J et al (2011) Cellulose 18:595

    Article  CAS  Google Scholar 

  28. Adebajo MO, Frost RL (2004) Spectrochim Acta A 60:449

    Article  Google Scholar 

  29. Guo Y, Wu P (2008) Carbohydr Polym 74:509

    Article  CAS  Google Scholar 

  30. Kondo T, Sawatari C (1996) Polymer 37:393

    Article  CAS  Google Scholar 

  31. Colom X, Carrillo F (2002) Eur Polym J 38:2225

    Article  CAS  Google Scholar 

  32. Fukuzumi H, Saito T, Okita Y et al (2010) Polym Degrad Stab 95:1502

    Article  CAS  Google Scholar 

  33. Bulota M, Kreitsmann K, Hughes M et al. (2012) Accepted for publication in J Appl Polym Sci

  34. Bulota M, Tanpichai S, Hughes M et al (2011) ACS Appl Mater Interfaces 4:337

    Google Scholar 

  35. Lee J, Zhang Q, Emrick T et al (2006) Macromolecules 39:7392

    Article  CAS  Google Scholar 

  36. Bagheri R, Pearson RA (2000) Polymer 41:269

    Article  CAS  Google Scholar 

  37. Henriksson M, Berglund LA, Isaksson P et al (2008) Biomacromolecules 9:1579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Academy of Finland (decision number 127609) for financial support. The authors are also grateful to Rita Hatakka for recording the FT-IR spectra and many thanks are due to Tuomas Hänninen for providing TEMPO-oxidized fibrillated cellulose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Bulota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulota, M., Hughes, M. Toughening mechanisms in poly(lactic) acid reinforced with TEMPO-oxidized cellulose. J Mater Sci 47, 5517–5523 (2012). https://doi.org/10.1007/s10853-012-6443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6443-x

Keywords

Navigation