Journal of Materials Science

, Volume 47, Issue 13, pp 5263–5275 | Cite as

Functionalization of textiles with multi-walled carbon nanotubes by a novel dyeing-like process

  • A. G. Gonçalves
  • B. Jarrais
  • C. Pereira
  • J. Morgado
  • C. Freire
  • M. F. R. Pereira


Multi-walled carbon nanotubes (MWCNTs) were functionalized with oxygen-containing surface groups and subsequently incorporated in cotton and polyester fabrics by a process that mimics the traditional industrial dyeing process. The washing fastness, hydrophobicity and flame retardancy of the functional textiles were evaluated. The MWCNTs surface chemistry was modified by three different routes: (i) liquid phase oxidation with nitric acid, in order to introduce acidic oxygen-containing groups, (ii) thermal treatment of the sample oxidized in (i), in order to remove the carboxylic acid functionalities and (iii) gas phase oxidation with 5% oxygen in nitrogen to incorporate basic and neutral groups. All samples were characterized by temperature programmed desorption, pH at the point of zero charge and N2 adsorption–desorption isotherms at −196 °C. The effect of the MWCNTs acidity/basicity and of the type of substrate in the nanomaterials incorporation efficiencies and in the performance of the final textile materials was assessed. The scanning electron microscopy images and the whiteness degree values of the functional textiles before and after washing indicated that the incorporation efficiency was higher for the textiles containing the most acidic MWCNTs, especially for the polyester textiles. The immobilization of the less acidic MWCNTs in polyester imparted hydrophobic properties to the fabrics surface; in particular, the polyester samples functionalized with unmodified and O2-oxidized MWCNTs presented an almost superhydrophobic behaviour. In the case of the cotton-based samples, a hydrophobic behaviour was not achieved. Finally, the flame-retardant properties of both substrates improved upon the MWCNTs immobilization.


Flame Retardancy Water Contact Angle Temperature Program Desorption Polyester Textile Polyester Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by Fundação para a Ciência e a Tecnologia (Portugal) and FEDER, through project PTDC/CTM/108820/2008 in the context of Programme COMPETE, grants PEst-C/EQB/LA0020/2011 and PEst-C/EQB/LA0006/2011, and by Universidade do Porto and Caixa Geral de Depósitos through project IPG63-Investigação Científica na Pré-Graduação 2007. C.P. thanks FCT for a postdoctoral grant (SFRH/BPD/79606/2011).


  1. 1.
    Bozzi A, Yuranova T, Guasaquillo I, Laub D, Kiwi J (2005) J Photochem Photobiol A: Chem 174:156CrossRefGoogle Scholar
  2. 2.
    Reinert G, Fuso F, Hilfiker R, Schmidt E (1997) Text Chem Color 29:36Google Scholar
  3. 3.
    Mahltig B, Bottcher H (2003) J Sol-Gel Sci Technol 27:43CrossRefGoogle Scholar
  4. 4.
    Hocker H (2002) Pure Appl Chem 74:423CrossRefGoogle Scholar
  5. 5.
    Alongi J, Ciobanu M, Tata J, Carosio F, Malucelli G (2011) J Appl Polym Sci 119:1961CrossRefGoogle Scholar
  6. 6.
    Panhuis MIH, Wu J, Ashraf SA, Wallace GG (2007) Synth Met 157:358CrossRefGoogle Scholar
  7. 7.
    Hirsch A (2002) Angew Chem Int Ed 41:1853CrossRefGoogle Scholar
  8. 8.
    Baddour CE, Briens C (2005) Int J Chem Reactor Eng 3:R3CrossRefGoogle Scholar
  9. 9.
    Kharisov BI, Kharissova OV, Gutierrez LH, Méndez OU (2008) Ind Eng Chem Res 48:572CrossRefGoogle Scholar
  10. 10.
    Coyle S, Wu YZ, Lau KT, De Rossi D, Wallace G, Diamond D (2007) MRS Bull 32:434CrossRefGoogle Scholar
  11. 11.
    Lacerda L, Raffa S, Prato M, Bianco A, Kostarelos K (2007) Nano Today 2:38CrossRefGoogle Scholar
  12. 12.
    Raffaelle RP, Landi BJ, Harris JD, Bailey SG, Hepp AF (2005) Mater Sci Eng B-Solid 116:233CrossRefGoogle Scholar
  13. 13.
    Pateaux S, Cras FL (2007) WO/2007/071778Google Scholar
  14. 14.
    Serp P, Corrias M, Kalck P (2003) Appl Catal A-Gen 253:337CrossRefGoogle Scholar
  15. 15.
    Hauke F, Hirsch A (2010) Carbon nanotubes and related structures. Wiley, GermanyGoogle Scholar
  16. 16.
    Parkin IP, Palgrave RG (2005) J Mater Chem 15:1689CrossRefGoogle Scholar
  17. 17.
    Liu Y, Tang J, Wang R et al (2007) J Mater Chem 17:1071CrossRefGoogle Scholar
  18. 18.
    Laxminarayana K, Jalili N (2005) Text Res J 75:670CrossRefGoogle Scholar
  19. 19.
    Pasta M, La Mantia F, Hu L, Deshazer H, Cui Y (2010) Nano Res 3:452CrossRefGoogle Scholar
  20. 20.
    Hu L, Pasta M, Mantia FL et al (2010) Nano Lett 10:708CrossRefGoogle Scholar
  21. 21.
    Fugetsu B, Akiba E, Hachiya M, Endo M (2009) Carbon 47:527CrossRefGoogle Scholar
  22. 22.
    Shim BS, Chen W, Doty C, Xu C, Kotov NA (2008) Nano Lett 8:4151CrossRefGoogle Scholar
  23. 23.
    Peng M, Qi J, Zhou Z, Liao Z, Zhu Z, Guo H (2010) Langmuir 26:13062CrossRefGoogle Scholar
  24. 24.
    Liu Y, Wang X, Qi K, Xin JH (2008) J Mater Chem 18:3454CrossRefGoogle Scholar
  25. 25.
    Li G, Wang H, Zheng H, Bai R (2010) Langmuir 26:7529CrossRefGoogle Scholar
  26. 26.
    Gonçalves AG, Figueiredo JL, Órfão JJM, Pereira MFR (2010) Carbon 48:4369CrossRefGoogle Scholar
  27. 27.
    Rivera-Utrilla J, Bautista-Toledo I, Ferro-García MA, Moreno-Castilla C (2001) J Chem Technol Biotechnol 76:1209CrossRefGoogle Scholar
  28. 28.
    Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Carbon 37:1379CrossRefGoogle Scholar
  29. 29.
    Rouette H-K (2001) Encyclopedia of textile finishing. Woodhead Publishing, CambridgeGoogle Scholar
  30. 30.
    ISO NE 105-C06:1999/AC:2009 Ensaios de solidez dos tintos. Parte C06: Solidez dos tintos à lavagem doméstica e industrialGoogle Scholar
  31. 31.
    ISO 3795:1989 Road vehicles, and tractors and machinery for agriculture and forestry—determination of burning behaviour of interior materialsGoogle Scholar
  32. 32.
    Araújo M, Melo e Castro EM (1987) Manual de Engenharia Têxtil. Fundação Calouste Gulbenkian, LisboaGoogle Scholar
  33. 33.
    Cegarra J, Puente P, Valldeperas J (1981) Fundamentos Científicos y aplicados de la tintura de materiais textiles. Universidad Politécnica de Barcelona, BarcelonaGoogle Scholar
  34. 34.
    Li X-M, Reinhoudt D, Crego-Calama M (2007) Chem Soc Rev 36:1350CrossRefGoogle Scholar
  35. 35.
    Roach P, Shirtcliffe NJ, Newton MI (2008) Soft Matter 4:224CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. G. Gonçalves
    • 1
    • 2
  • B. Jarrais
    • 2
  • C. Pereira
    • 3
  • J. Morgado
    • 4
  • C. Freire
    • 3
  • M. F. R. Pereira
    • 1
  1. 1.Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Departamento de Engenharia Química, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  2. 2.Centro de Nanotecnologia e Materiais Técnicos, Funcionais e Inteligentes (CeNTI)Vila Nova de FamalicãoPortugal
  3. 3.REQUIMTE, Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  4. 4.Centro Tecnológico das Indústrias Têxtil e do Vestuário de Portugal (CITEVE)Vila Nova de FamalicãoPortugal

Personalised recommendations