Advertisement

Journal of Materials Science

, Volume 47, Issue 21, pp 7472–7481 | Cite as

Electron–phonon coupling and charge-transfer excitations in organic systems from many-body perturbation theory

The Fiesta code, an efficient Gaussian-basis implementation of the GW and Bethe–Salpeter formalisms
  • Carina Faber
  • Ivan Duchemin
  • Thierry Deutsch
  • Claudio Attaccalite
  • Valerio Olevano
  • Xavier Blase
First Principles Computations

Abstract

We review in this article recent developments within the framework of ab initio many-body perturbation theory aiming at providing an accurate description of the electronic and excitonic properties of π-conjugated organic systems currently used in organic photovoltaic cells. In particular, techniques such as the GW and Bethe–Salpeter formalisms are being benchmarked for acenes, fullerenes, porphyrins, phthalocyanines, and other molecules of interest for solar energy applications. It is shown that not only the electronic properties, but also the electron–phonon coupling matrix elements, and the charge-transfer excitations in donor/acceptor complexes, are accurately described. The present calculations on molecules containing up to a hundred atoms are based on a recently developed Gaussian auxiliary basis implementation of the GW and Bethe–Salpeter formalism, including full dynamics with contour-deformation techniques, as implemented in the Fiesta code.

Keywords

Fullerene Density Functional Theory Pentacene TCNE Auxiliary Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Computing time has been provided by the local CIMENT and national IDRIS supercomputing (Project no. 100063) centers in Grenoble and Orsay, respectively. The authors acknowledge Dr. Laflamme Janssen, Pr. Michel Côté, and Pr. Erich Runge, with whom parts of the work presented in this review were achieved, and Pr. Mark Casida for useful discussions.

References

  1. 1.
    Brabec C, Dyakonov V, Parisi J, Sariciftci NS (2003) In: Organic photovoltaics: concepts and realization. Springer series in material science. Springer, New YorkGoogle Scholar
  2. 2.
    B Kippelen, J-L Brédas (2009) Energy Environ Sci 2:251CrossRefGoogle Scholar
  3. 3.
    Brédas JL, Norton JE, Cornil J et al (2009) Acc Chem Res 42:1691CrossRefGoogle Scholar
  4. 4.
    Quantitative information on solar energy can be found at the International Energy Agency Photovoltaic Power Systems Program. http://www.iea-pvps.org
  5. 5.
    Park S, Boy A, Beaupré S, Cho S et al (2009) Nat Photonics 3:297CrossRefGoogle Scholar
  6. 6.
    Chen H-Y et al (2009) Nat Photonics 3:649CrossRefGoogle Scholar
  7. 7.
    Brabec CJ et al (2001) Adv Funct Mater 11:374CrossRefGoogle Scholar
  8. 8.
    Scharber MC et al (2006) Adv Mater 18:789CrossRefGoogle Scholar
  9. 9.
    Kooistra FB et al (2007) Org Lett 9:551CrossRefGoogle Scholar
  10. 10.
    Tkatchenko A, Romaner L, Hofmann OT et al (2010) MRS Bull 35(6):435CrossRefGoogle Scholar
  11. 11.
    Aulbur WG, Jonsson L, Wilkins JW (2000) Solid State Phys 54:1CrossRefGoogle Scholar
  12. 12.
    Shukla MK, Leszczynski J (2006) Chem Phys Lett 428:317CrossRefGoogle Scholar
  13. 13.
    Zhang Z et al (2008) J Phys Chem C 112:19158Google Scholar
  14. 14.
    From the NIST chemistry webbook. http://webbook.nist.gov/chemistry/
  15. 15.
    Refaely-Abramson S, Baer R, Kronik L (2011) Phys Rev B 84:075144CrossRefGoogle Scholar
  16. 16.
    Dabo I, Ferretti A, Pilvert N et al (2010) Phys Rev B 82:115121CrossRefGoogle Scholar
  17. 17.
    Hedin L (1965) Phys Rev 139:A796CrossRefGoogle Scholar
  18. 18.
    Strinati G, Mattausch HJ, Hanke W (1980) Phys Rev Lett 45:290CrossRefGoogle Scholar
  19. 19.
    Strinati G, Mattausch HJ, Hanke W (1982) Phys Rev B 25:2867CrossRefGoogle Scholar
  20. 20.
    Hybertsen MS, Louie SG (1986) Phys Rev B 34:5390CrossRefGoogle Scholar
  21. 21.
    Godby RW, Schlüter M, Sham LJ (1988) Phys Rev B 37:10159CrossRefGoogle Scholar
  22. 22.
    Sham LJ, Rice TM (1966) Phys Rev 144:708CrossRefGoogle Scholar
  23. 23.
    Hanke W, Sham LJ (1979) Phys Rev Lett 43:387CrossRefGoogle Scholar
  24. 24.
    Strinati G (1982) Phys Rev Lett 49:1519CrossRefGoogle Scholar
  25. 25.
    Rohlfing M, Louie SG (1998) Phys Rev Lett 80:3320CrossRefGoogle Scholar
  26. 26.
    Benedict LX, Shirley E, Bohn RB (1998) Phys Rev Lett 80:4514CrossRefGoogle Scholar
  27. 27.
    Albrecht S, Reining L, Del Sole R, Onida G (1998) Phys Rev Lett 80:4510CrossRefGoogle Scholar
  28. 28.
    Tiago ML, Northrup JE, Louie SG (2003) Phys Rev B 67:115212CrossRefGoogle Scholar
  29. 29.
    Hummer K, Puschnig P, Ambrosch-Draxl C (2004) Phys Rev Lett 92:147402CrossRefGoogle Scholar
  30. 30.
    Puschnig P, Ambrosch-Draxl C (2009) Com Ren Phys 10:504CrossRefGoogle Scholar
  31. 31.
    Dori N, Menon M, Kilia L et al (2006) Phys Rev B 73:195208CrossRefGoogle Scholar
  32. 32.
    Ethridge EC, Fry JL, Zaider M (1996) Phys Rev B 53:3662CrossRefGoogle Scholar
  33. 33.
    van der Horst J-W, Bobbert PA, Michels MAJ, Brocks G, Kelly PJ (1999) Phys Rev Lett 83:4413CrossRefGoogle Scholar
  34. 34.
    Rohlfing M, Louie SG (1999) Phys Rev Lett 82:1959CrossRefGoogle Scholar
  35. 35.
    Tiago ML, Rohlfing M, Louie SG (2004) Phys Rev B 70:193204CrossRefGoogle Scholar
  36. 36.
    Rignanese GM, Blase X, Louie SG (2001) Phys Rev Lett 86:2110CrossRefGoogle Scholar
  37. 37.
    Neaton JB, Hybertsen Mark S, Louie Steven G (2006) Phys Rev Lett 97:216405CrossRefGoogle Scholar
  38. 38.
    Quek SY, Neaton JB, Hybertsen MS, Kaxiras E, Louie SG (2007) Phys Rev Lett 98:066807CrossRefGoogle Scholar
  39. 39.
    Garcia-Lastra JM, Thygesen KS (2011) Phys Rev Lett 106:187402CrossRefGoogle Scholar
  40. 40.
    Garcia-Lastra JM, Thygesen KS (2011) Phys Rev Lett 107:179901CrossRefGoogle Scholar
  41. 41.
    Tamblyn I, Darancet P, Quek SY, Bonev SA, Neaton JB (2011) Phys Rev B 84:201402(R)CrossRefGoogle Scholar
  42. 42.
    Strange M, Rostgaard C, Hakkinen H, Thygesen KS (2011) Phys Rev B 83:115108CrossRefGoogle Scholar
  43. 43.
    Rangel T, Ferretti A, Trevisanutto PE, Olevano V, Rignanese G-M (2011) Phys Rev B 84:045426CrossRefGoogle Scholar
  44. 44.
    Tiago ML, Chelikowsky JR (2005) Solid State Commun 136:333CrossRefGoogle Scholar
  45. 45.
    Palummo M, Hogan C, Sottile F et al (2009) J Chem Phys 131:084102CrossRefGoogle Scholar
  46. 46.
    Ma Y, Rohlfing M, Molteni C (2009) Phys Rev B 80:241405CrossRefGoogle Scholar
  47. 47.
    Stenuit G, Castellarin-Cudia C, Plekan O et al (2010) Phys Chem Chem Phys 12:10812CrossRefGoogle Scholar
  48. 48.
    Umari P, Stenuit G, Baroni S (2010) Phys Rev B 81:115104CrossRefGoogle Scholar
  49. 49.
    Blase X, Attaccalite C, Olevano V (2011) Phys Rev B 83:115103CrossRefGoogle Scholar
  50. 50.
    Blase X, Attaccalite C (2011) Appl Phys Lett 99:171909CrossRefGoogle Scholar
  51. 51.
    Foerster D, Koval P, Sánchez-Portal D (2011) J Chem Phys 135:074105CrossRefGoogle Scholar
  52. 52.
    Noa M, Xinguo R, Moussa JE et al (2011) Phys Rev B 84:195143CrossRefGoogle Scholar
  53. 53.
    Faber C, Attaccalite C, Olevano V, Runge E, Blase X (2011) Phys Rev B 83:115103CrossRefGoogle Scholar
  54. 54.
    Faber C, Jonathan Laflamme J, Côté M, Runge E, Blase X (2011) Phys Rev B 84:155104CrossRefGoogle Scholar
  55. 55.
    Artacho E, Anglada E, Dieguez O, Gale JD, Garca A, Junquera J, Martin RM, Ordejón P, Pruneda JM, Sánchez-Portal D, Soler JM (2008) J Phys Condens Matter 20:064208Google Scholar
  56. 56.
    Blase X, Ordejón P (2004) Phys Rev B 69:085111Google Scholar
  57. 57.
    Runge E, Gross EKU (1984) Phys Rev Lett 52:997CrossRefGoogle Scholar
  58. 58.
    Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (2006) In: Time-dependent density functional theory. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  59. 59.
    Casida ME (2009) J Mol Struct (Theochem) 914:3CrossRefGoogle Scholar
  60. 60.
    Rohlfing M, Krüger P, Pollmann J (1995) Phys Rev B 52:1905CrossRefGoogle Scholar
  61. 61.
    Pavlyukh Y, Hubner W (2004) Phys Lett A 327:241CrossRefGoogle Scholar
  62. 62.
    Chang E, Bussi G, Ruini A, Molinari E (2004) Phys Rev Lett 92:196401CrossRefGoogle Scholar
  63. 63.
    Cherkes I, Klaiman S, Miseyev N (2009) Int J Quantum Chem 109:2996CrossRefGoogle Scholar
  64. 64.
    Aryasetiawan F, Gunnarsson O (1994) Phys Rev B 49:16214CrossRefGoogle Scholar
  65. 65.
    Tiago ML, Chelikowsky JR (2006) Phys Rev B 73:205334CrossRefGoogle Scholar
  66. 66.
    Anglada E, Soler JM, Junquera J, Artacho E (2002) Phys Rev B 66:205101CrossRefGoogle Scholar
  67. 67.
    Farid B (1999) . In: March NH (eds) Electron correlation in the solid state. World Scientific, Singapore, p 217 (references therein)Google Scholar
  68. 68.
    Hahn PH, Schmidt WG, Bechstedt F (2005) Phys Rev B 72:245425CrossRefGoogle Scholar
  69. 69.
    Rostgaard C, Jacobsen KW, Thygesen KS (2010) Phys Rev B 81:085103CrossRefGoogle Scholar
  70. 70.
    Kaasbjerg K, Thygesen KS (2010) Phys Rev B 81:085102CrossRefGoogle Scholar
  71. 71.
    Ke SH (2011) Phys Rev B 84:205415CrossRefGoogle Scholar
  72. 72.
    Bravaya KB, Kostko O, Dolgikh S, Landau A et al (2010) J Phys Chem A 114:12305 (references therein)Google Scholar
  73. 73.
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Chem Rev 107:926CrossRefGoogle Scholar
  74. 74.
    Hatch RC, Huber DL, Hartmut H (2010) Phys Rev Lett 104:047601CrossRefGoogle Scholar
  75. 75.
    Sancho-García JC (2007) Chem Phys 331:321Google Scholar
  76. 76.
    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Rev Mod Phys 73:515CrossRefGoogle Scholar
  77. 77.
    Coropceanu V, Malagoli M, da Silva Filho DA, Gruhn NE, Bill TG, Brédas JL (2002) Phys Rev Lett 89:275503CrossRefGoogle Scholar
  78. 78.
    Kato T et al (2002) J Chem Phys 116:3420CrossRefGoogle Scholar
  79. 79.
    Mahan GD (1990) In: Many-particle physics, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  80. 80.
    Schlüter M, Lannoo M, Needels M, Baraff GA, Tománek D (1992) Phys Rev Lett 68:526CrossRefGoogle Scholar
  81. 81.
    Antropov VP, Gunnarsson O, Liechtenstein AI (1993) Phys Rev B 48:7651CrossRefGoogle Scholar
  82. 82.
    Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW et al (1991) Nature (London) 350:600CrossRefGoogle Scholar
  83. 83.
    Ganin AY, Takabayashi Y, Khimyak YZ, Margadonna S, Tamai A, Rosseinsky MJ, Prassides K (2008) Nat Mater 7:367CrossRefGoogle Scholar
  84. 84.
    Gunnarsson O (1997) Rev Mod Phys 69:575Google Scholar
  85. 85.
    Hands ID, Dunn JL, Janette L, Bates CA, Colin A, Hope MJ, Michael J, Meech SR, Andrews DL (2008) Phys Rev B 77:115445CrossRefGoogle Scholar
  86. 86.
    Wang X-B, Woo H-K, Wang L-S (2005) J Chem Phys 123:051106CrossRefGoogle Scholar
  87. 87.
    Saito M (2002) Phys Rev B 65:220508(R)Google Scholar
  88. 88.
    Laflamme Janssen J, Côté M, Louie SG, Cohen ML (2010) Phys Rev B 81:073106CrossRefGoogle Scholar
  89. 89.
    Iwahara N, Sato T, Tanaka K, Chibotaru LF (2010) Phys Rev B 82:245409CrossRefGoogle Scholar
  90. 90.
    Gunnarsson O, Handschuh H, Bechthold PS, Kessler B, Gantefor G, Eberhardt W (1995) Phys Rev Lett 74:1875CrossRefGoogle Scholar
  91. 91.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  92. 92.
    Lazzeri M, Attaccalite C, Wirtz L, Mauri F (2008) Phys Rev B 78:081406CrossRefGoogle Scholar
  93. 93.
    Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126:4007Google Scholar
  94. 94.
    Lange AW, Herbert JM (2009) J Am Chem Soc 131:3913 (see in particular the Supplementary materials)Google Scholar
  95. 95.
    Stein T, Kronik L, Baer R (2009) J Am Chem Soc 131:2818CrossRefGoogle Scholar
  96. 96.
    Hanazaki IJ (1972) Phys Chem 76:1982CrossRefGoogle Scholar
  97. 97.
    Massnovi JM, Seddon EA, Kochi JJ (1984) J Can J Chem 62:2552CrossRefGoogle Scholar
  98. 98.
    Marini A, Hogan C, Grüning M, Varsano D (2009) Comput Phys Commun 180:1392CrossRefGoogle Scholar
  99. 99.
    McMahon DP, Cheung DL, Troisi A (2011) J Phys Chem Lett 2:2737CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carina Faber
    • 1
  • Ivan Duchemin
    • 2
  • Thierry Deutsch
    • 2
  • Claudio Attaccalite
    • 1
  • Valerio Olevano
    • 1
  • Xavier Blase
    • 1
  1. 1.Institut Néel, CNRS/UJFGrenoble, Cedex 09France
  2. 2.Laboratoire de Simulation Atomistique (L_Sim), SP2M, INAC, CEA-UJFGrenobleFrance

Personalised recommendations