Skip to main content
Log in

Effects of temperature and ferromagnetism on the γ-Ni/γ′-Ni3Al interfacial free energy from first principles calculations

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The temperature dependencies of the γ(f.c.c.)-Ni/γ′-Ni3Al(L12) interfacial free energy for the {100}, {110}, and {111} interfaces are calculated using first-principles calculations, including both coherency strain energy and phonon vibrational entropy. Calculations performed including ferromagnetic effects predict that the {100}-type interface has the smallest free energy at different elevated temperatures, while alternatively the {111}-type interface has the smallest free energy when ferromagnetism is absent; the latter result is inconsistent with experimental observations of γ′-Ni3Al-precipitates in Ni–Al alloys faceted strongly on {100}-type planes. The γ(f.c.c.)-Ni/γ′-Ni3Al interfacial free energies for the {100}, {110}, and {111} interfaces decrease with increasing temperature due to vibrational entropy. The predicted morphology of γ′-Ni3Al(L12) precipitates, based on a Wulff construction, is a Great Rhombicuboctahedron (or Truncated Cuboctahedron), which is one of the 13 Archimedean solids, with 6-{100}, 12-{110}, and 8-{111} facets. The first-principles calculated morphology of a γ′-Ni3Al(L12) precipitate is in agreement with experimental three-dimensional atom-probe tomographic observations of cuboidal L12 precipitates with large {100}-type facets in a Ni-13.0 at.% Al alloy aged at 823 K for 4096 h. At 823 K this alloy has a lattice parameter mismatch of 0.004 ± 0.001 between the γ(f.c.c.)-Ni-matrix and the γ′-Ni3Al-precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sims CT (1987) In: Sims CT, Stoloff NS, Hagel WC (eds) Superalloys II high—temperature materials for aerospace and industrial power. Wiley, New York

  2. Ardell AJ (1995) Interf Sci 3:119

    Article  CAS  Google Scholar 

  3. Ardell AJ (2011) J Mater Sci 46:4832. doi:10.1007/s10853-011-5395-x

    Article  CAS  Google Scholar 

  4. Mishin Y (2004) Acta Mater 52:1451. doi:10.1016/j.actamat.2003.11.026

    Article  CAS  Google Scholar 

  5. Baldan A (2002) J Mater Sci 37:2379. doi:10.1023/A:1015408116016

    Article  CAS  Google Scholar 

  6. Wolverton C, Zunger A (1999) Phys Rev B 59:12165

    Article  CAS  Google Scholar 

  7. Calderon HA, Voorhees PW, Murray JL, Kostorz G (1994) Acta Metall Mater 42:991

    Article  CAS  Google Scholar 

  8. DL Price, BR Cooper (1996) In: Materials theory, simulations, and parallel algorithms. MRS Proceedings. Cambridge University Press, Cambridge 408: 463

  9. Amouyal Y, Mao ZG, Seidman DN (2008) Appl Phys Lett 93:201905. doi:10.1063/1.3026745 Artn 201905

    Article  Google Scholar 

  10. Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  11. Wagner C (1961) Z Electrochem 65:581

    CAS  Google Scholar 

  12. Wagner R, Kampmann R, Voorhees PW (2001) Homogeneous second-phase precipitation. Wiley-VCH, Weinheim

    Google Scholar 

  13. Ardell AJ, Nicholson RB (1966) J Phys Chem Solids 27:1793

    Article  CAS  Google Scholar 

  14. Ardell AJ, Nicholson RB, Eshelby JD (1966) Acta Metall Mater 14:1295

    Article  CAS  Google Scholar 

  15. Kresse G, Furthmueller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  16. Kresse G, Furthmuller J (1996) Comp Mater Sci 6:15

    Article  CAS  Google Scholar 

  17. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  18. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  19. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  20. Paier J, Hirschl R, Marsman M, Kresse G (2005) J Chem Phys 122:234102. doi:10.1063/1.1926272 Artn234102

    Article  Google Scholar 

  21. Yin MT, Cohen ML (1980) Phys Rev Lett 45:1004

    Article  CAS  Google Scholar 

  22. Ho KM, Fu CL, Harmon BN, Weber W, Hamann DR (1982) Phys Rev Lett 49:673

    Article  CAS  Google Scholar 

  23. Lam PK, Cohen ML (1982) Phys Rev B 25:6139

    Article  CAS  Google Scholar 

  24. Mishima Y, Ochiai S, Suzuki T (1985) Acta Metall Mater 33:1161

    Article  CAS  Google Scholar 

  25. van de Walle A, Ceder G (2002) Rev Mod Phys 74:11

    Article  Google Scholar 

  26. Maradudin AA (1971) Theory of lattice dynamics in the harmonic approximation, 2nd edn. Academic Press, New York

    Google Scholar 

  27. Huntington HB, Shirn GA, Wajda ES (1955) Phys Rev 99:1085

    Article  CAS  Google Scholar 

  28. Srinivasan R, Banerjee R, Hwang JY, et al (2009) Phys Rev Lett 102. Artn 086101. doi:10.1103/Physrevlett.102.086101

  29. Mao Z, Sudbrack CK, Yoon KE, Martin G, Seidman DN (2006) Nat Mater 6:210

    Article  Google Scholar 

  30. Sluiter M, Kawazoe Y (1996) Phys Rev B 54:10381

    Article  CAS  Google Scholar 

  31. Ardell AJ, Ozolins V (2005) Nat Mater 4:309. doi:10.1038/Nmat1340

    Article  CAS  Google Scholar 

  32. Clouet E, Nastar M, Sigli C (2004) Phys Rev B 69:064109. doi:10.1103/Physrevb.69.064109 Artn 064109

    Article  Google Scholar 

  33. Marquis EA, Seidman DN (2001) Acta Mater 49:1909

    Article  CAS  Google Scholar 

  34. Wulffman package from NIST. http://www.ctcms.nist.gov/wulffman/

  35. Plotnikov EY PhD in progress, Northwestern University, arc.nucapt.northwestern.edu

  36. Bajikar SS, Larson DJ, Kelly TF, Camus PP (1996) Ultramicroscopy 65:119

    Article  CAS  Google Scholar 

  37. Kelly TF, Camus PP, Larson DJ, Holzman LM, Bajikar SS (1996) Ultramicroscopy 62:29

    Article  CAS  Google Scholar 

  38. Kelly TF, Larson DJ (2000) Mater Charact 44:59

    Article  CAS  Google Scholar 

  39. Karnesky RA, Isheim D, Seidman DN (2007) Appl Phys Lett 91. Artn 013111. doi:10.1063/1.2753097

  40. Bunton JH, Olson JD, Lenz DR, Kelly TE (2007) Microsc Microanal 13:418. doi:10.1017/S1431927607070869

    Article  CAS  Google Scholar 

  41. Seidman DN, Stiller K (2009) MRS Bull 34:717

    Article  Google Scholar 

  42. Seidman DN (2007) Annu Rev Mater Res 37:127

    Article  CAS  Google Scholar 

  43. Sudbrack CK, Isheim D, Noebe RD, Jacobson NS, Seidman DN (2004) Microsc Microanal 10:355. doi:10.1017/S1431927604040589

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by National Science Foundation, Division of Materials Research, number DMR-080461, Dr. A. J. Ardell, and Dr. E. Taleff, grant monitors. Dr. R. D. Noebe, NASA Glenn Research Center, Cleveland, Ohio, is kindly thanked for processing, aging and preparing the Ni-13 at.% Al for atom-probe tomography. We thank Prof. C. Wolverton for many helpful discussions and suggestions. Atom-probe tomographic measurements were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The LEAP tomograph was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, NOOO14-0910781) grants and ISEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Seidman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Z., Booth-Morrison, C., Plotnikov, E. et al. Effects of temperature and ferromagnetism on the γ-Ni/γ′-Ni3Al interfacial free energy from first principles calculations. J Mater Sci 47, 7653–7659 (2012). https://doi.org/10.1007/s10853-012-6399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6399-x

Keywords

Navigation