Journal of Materials Science

, Volume 47, Issue 21, pp 7653–7659 | Cite as

Effects of temperature and ferromagnetism on the γ-Ni/γ′-Ni3Al interfacial free energy from first principles calculations

  • Zugang Mao
  • Christopher Booth-Morrison
  • Elizaveta Plotnikov
  • David N. Seidman
First Principles Computations


The temperature dependencies of the γ(f.c.c.)-Ni/γ′-Ni3Al(L12) interfacial free energy for the {100}, {110}, and {111} interfaces are calculated using first-principles calculations, including both coherency strain energy and phonon vibrational entropy. Calculations performed including ferromagnetic effects predict that the {100}-type interface has the smallest free energy at different elevated temperatures, while alternatively the {111}-type interface has the smallest free energy when ferromagnetism is absent; the latter result is inconsistent with experimental observations of γ′-Ni3Al-precipitates in Ni–Al alloys faceted strongly on {100}-type planes. The γ(f.c.c.)-Ni/γ′-Ni3Al interfacial free energies for the {100}, {110}, and {111} interfaces decrease with increasing temperature due to vibrational entropy. The predicted morphology of γ′-Ni3Al(L12) precipitates, based on a Wulff construction, is a Great Rhombicuboctahedron (or Truncated Cuboctahedron), which is one of the 13 Archimedean solids, with 6-{100}, 12-{110}, and 8-{111} facets. The first-principles calculated morphology of a γ′-Ni3Al(L12) precipitate is in agreement with experimental three-dimensional atom-probe tomographic observations of cuboidal L12 precipitates with large {100}-type facets in a Ni-13.0 at.% Al alloy aged at 823 K for 4096 h. At 823 K this alloy has a lattice parameter mismatch of 0.004 ± 0.001 between the γ(f.c.c.)-Ni-matrix and the γ′-Ni3Al-precipitates.


Ni3Al Interfacial Free Energy Vibrational Entropy Equilibrium Morphology Archimedean Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by National Science Foundation, Division of Materials Research, number DMR-080461, Dr. A. J. Ardell, and Dr. E. Taleff, grant monitors. Dr. R. D. Noebe, NASA Glenn Research Center, Cleveland, Ohio, is kindly thanked for processing, aging and preparing the Ni-13 at.% Al for atom-probe tomography. We thank Prof. C. Wolverton for many helpful discussions and suggestions. Atom-probe tomographic measurements were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The LEAP tomograph was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, NOOO14-0910781) grants and ISEN.


  1. 1.
    Sims CT (1987) In: Sims CT, Stoloff NS, Hagel WC (eds) Superalloys II high—temperature materials for aerospace and industrial power. Wiley, New YorkGoogle Scholar
  2. 2.
    Ardell AJ (1995) Interf Sci 3:119CrossRefGoogle Scholar
  3. 3.
    Ardell AJ (2011) J Mater Sci 46:4832. doi: 10.1007/s10853-011-5395-x CrossRefGoogle Scholar
  4. 4.
    Mishin Y (2004) Acta Mater 52:1451. doi: 10.1016/j.actamat.2003.11.026 CrossRefGoogle Scholar
  5. 5.
    Baldan A (2002) J Mater Sci 37:2379. doi: 10.1023/A:1015408116016 CrossRefGoogle Scholar
  6. 6.
    Wolverton C, Zunger A (1999) Phys Rev B 59:12165CrossRefGoogle Scholar
  7. 7.
    Calderon HA, Voorhees PW, Murray JL, Kostorz G (1994) Acta Metall Mater 42:991CrossRefGoogle Scholar
  8. 8.
    DL Price, BR Cooper (1996) In: Materials theory, simulations, and parallel algorithms. MRS Proceedings. Cambridge University Press, Cambridge 408: 463Google Scholar
  9. 9.
    Amouyal Y, Mao ZG, Seidman DN (2008) Appl Phys Lett 93:201905. doi: 10.1063/1.3026745 Artn 201905CrossRefGoogle Scholar
  10. 10.
    Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35CrossRefGoogle Scholar
  11. 11.
    Wagner C (1961) Z Electrochem 65:581Google Scholar
  12. 12.
    Wagner R, Kampmann R, Voorhees PW (2001) Homogeneous second-phase precipitation. Wiley-VCH, WeinheimGoogle Scholar
  13. 13.
    Ardell AJ, Nicholson RB (1966) J Phys Chem Solids 27:1793CrossRefGoogle Scholar
  14. 14.
    Ardell AJ, Nicholson RB, Eshelby JD (1966) Acta Metall Mater 14:1295CrossRefGoogle Scholar
  15. 15.
    Kresse G, Furthmueller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  16. 16.
    Kresse G, Furthmuller J (1996) Comp Mater Sci 6:15CrossRefGoogle Scholar
  17. 17.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  18. 18.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
  19. 19.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  20. 20.
    Paier J, Hirschl R, Marsman M, Kresse G (2005) J Chem Phys 122:234102. doi: 10.1063/1.1926272 Artn234102CrossRefGoogle Scholar
  21. 21.
    Yin MT, Cohen ML (1980) Phys Rev Lett 45:1004CrossRefGoogle Scholar
  22. 22.
    Ho KM, Fu CL, Harmon BN, Weber W, Hamann DR (1982) Phys Rev Lett 49:673CrossRefGoogle Scholar
  23. 23.
    Lam PK, Cohen ML (1982) Phys Rev B 25:6139CrossRefGoogle Scholar
  24. 24.
    Mishima Y, Ochiai S, Suzuki T (1985) Acta Metall Mater 33:1161CrossRefGoogle Scholar
  25. 25.
    van de Walle A, Ceder G (2002) Rev Mod Phys 74:11CrossRefGoogle Scholar
  26. 26.
    Maradudin AA (1971) Theory of lattice dynamics in the harmonic approximation, 2nd edn. Academic Press, New YorkGoogle Scholar
  27. 27.
    Huntington HB, Shirn GA, Wajda ES (1955) Phys Rev 99:1085CrossRefGoogle Scholar
  28. 28.
    Srinivasan R, Banerjee R, Hwang JY, et al (2009) Phys Rev Lett 102. Artn 086101. doi: 10.1103/Physrevlett.102.086101
  29. 29.
    Mao Z, Sudbrack CK, Yoon KE, Martin G, Seidman DN (2006) Nat Mater 6:210CrossRefGoogle Scholar
  30. 30.
    Sluiter M, Kawazoe Y (1996) Phys Rev B 54:10381CrossRefGoogle Scholar
  31. 31.
    Ardell AJ, Ozolins V (2005) Nat Mater 4:309. doi: 10.1038/Nmat1340 CrossRefGoogle Scholar
  32. 32.
    Clouet E, Nastar M, Sigli C (2004) Phys Rev B 69:064109. doi: 10.1103/Physrevb.69.064109 Artn 064109CrossRefGoogle Scholar
  33. 33.
    Marquis EA, Seidman DN (2001) Acta Mater 49:1909CrossRefGoogle Scholar
  34. 34.
    Wulffman package from NIST.
  35. 35.
    Plotnikov EY PhD in progress, Northwestern University,
  36. 36.
    Bajikar SS, Larson DJ, Kelly TF, Camus PP (1996) Ultramicroscopy 65:119CrossRefGoogle Scholar
  37. 37.
    Kelly TF, Camus PP, Larson DJ, Holzman LM, Bajikar SS (1996) Ultramicroscopy 62:29CrossRefGoogle Scholar
  38. 38.
    Kelly TF, Larson DJ (2000) Mater Charact 44:59CrossRefGoogle Scholar
  39. 39.
    Karnesky RA, Isheim D, Seidman DN (2007) Appl Phys Lett 91. Artn 013111. doi: 10.1063/1.2753097
  40. 40.
    Bunton JH, Olson JD, Lenz DR, Kelly TE (2007) Microsc Microanal 13:418. doi: 10.1017/S1431927607070869 CrossRefGoogle Scholar
  41. 41.
    Seidman DN, Stiller K (2009) MRS Bull 34:717CrossRefGoogle Scholar
  42. 42.
    Seidman DN (2007) Annu Rev Mater Res 37:127CrossRefGoogle Scholar
  43. 43.
    Sudbrack CK, Isheim D, Noebe RD, Jacobson NS, Seidman DN (2004) Microsc Microanal 10:355. doi: 10.1017/S1431927604040589 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Zugang Mao
    • 1
  • Christopher Booth-Morrison
    • 1
  • Elizaveta Plotnikov
    • 1
  • David N. Seidman
    • 1
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations