Skip to main content
Log in

Biocompatibility and anti-cracking performance of perfluorocarboxylic acid ionomer membranes for implantable biosensors

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Perfluorosulfonate ionomer (PFSI) membranes can be used to protect biosensors in biological environment. Perfluorocarboxylate ionomer (PFCI) has similar structure to PFSI, and is thus expected to be applicable in vivo. In this study, biocompatibility and anti-cracking performance of PFCI membranes were first investigated. Among various kinds of PFCI membranes, the Na+-type exhibited best blood compatibility, as evidenced by the human platelet adhesion and hemolysis rate experiments. When cultured on Na+-type PFCI membranes, endothelial cells spread and proliferated to colonize the entire surface, indicating good cell adhesion activity of the membranes. The Na+-type membranes were also subcutaneously implanted into guinea pigs, whose incisions were healed after operation without significant rejection phenomenon. After incubation in cell culture medium for 12 weeks, PFCI membranes kept intact only with trace amount of calcium phosphate deposition. XRD and SAXS results demonstrated that PFCI membranes possessed higher crystallinity and smaller ion cluster size than PFSI membranes, thereby endowing the membranes with much better anti-cracking performance. The excellent biocompatibility and anti-cracking performance of Na+-type PFCI membranes make them promising implantable biomaterials and protective layers in biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Krafft MP, Riess JG (2007) J Polym Sci A 45:1185

    Article  CAS  Google Scholar 

  2. Klinge U, Klosterhalfen B, Öttinger AP, Junge K, Schumpelick V (2002) Biomaterials 23:3487

    Article  CAS  Google Scholar 

  3. Bayer IS, Tiwari MK, Megaridis CM (2008) Appl Phys Lett 93:173902

    Article  Google Scholar 

  4. Laroche G, Lafrance C-P, Prud’homme RE, Guidoin R (1998) J Biomed Mater Res 39:184

    Article  CAS  Google Scholar 

  5. Laroche G, Marois Y, Guidoin R, King MW, Martin L, How T, Douville Y (1995) J Biomed Mater Res 29:1525

    Article  CAS  Google Scholar 

  6. Carla H-W (1996) J Membrane Sci 120:1

    Article  Google Scholar 

  7. Mauritz KennethA, Moore RB (2004) Chem Rev 104:4535

    Article  CAS  Google Scholar 

  8. Ukihashi H, Yamabe M, Miyake H (1986) Prog Polym Sci 12:229

    Article  CAS  Google Scholar 

  9. Li H, Yuan Z, Ng TY, Lee HP, Lam KY, Wang QX, Wu S, Fu J, Hanes J (2003) J Biomater Sci Polymer Edn 14:1181

    Article  Google Scholar 

  10. Haworth B, Gilbert M, Myers D (2005) J Mater Sci 40:955. doi:10.1007/s10853-005-6514-3

    Article  CAS  Google Scholar 

  11. Wisniewski N, Reichert M (2000) Colloid Surf B 18:197

    Article  CAS  Google Scholar 

  12. Moussy F, Harrison DJ (1994) Anal Chem 66:674

    Article  CAS  Google Scholar 

  13. Mercado RC, Moussy F (1998) Biosens Bioelectron 13:133

    Article  CAS  Google Scholar 

  14. Wang F, Li MS, Lu YP, Ge SS (2005) J Mater Sci 40:2073. doi:10.1007/s10853-005-1238-y

    Article  CAS  Google Scholar 

  15. Spanos N, Misirlis D, Kanellopoulou D, Koutsoukos P (2006) J Mater Sci 41:1805. doi:10.1007/s10853-006-2952-9

    Article  CAS  Google Scholar 

  16. GrØndahl L, Cardona F, Chiem K, Wentrup-Byrne E, Bostrom T (2003) J Mater Sci Mater Med 14:503

    Article  Google Scholar 

  17. Suzuki S, GrØndahl L, Leavesley D, Wentrup-Byrne E (2005) Biomaterials 26:5303

    Article  CAS  Google Scholar 

  18. Filmon R, Grizon F, Baslé MF, Chappard D (2002) Biomaterials 23:3053

    Article  CAS  Google Scholar 

  19. Zhu P, Masuda Y, Koumoto K (2004) Biomaterials 25:3915

    Article  CAS  Google Scholar 

  20. Silva CC, Pinheiro AG, Figueiró SD, Góes JC, Sasaki JM, Miranda MAR, Sombra ASB (2002) J Mater Sci 37:2061. doi:10.1023/A:1015219800490

    Article  CAS  Google Scholar 

  21. Lim JS, Kim JH (2009) J Mater Sci 44:6398. doi:10.1007/s10853-009-3882-0

    Article  CAS  Google Scholar 

  22. Akazawa T, Kobayashi M, Kanno T, Kodaira K (1998) J Mater Sci 33:1927. doi:10.1023/A:1004373809449

    Article  CAS  Google Scholar 

  23. James K, Levene H, Parsons JR, Kohn J (1999) Biomaterials 20:2203

    Article  CAS  Google Scholar 

  24. Ai F, Yuan W, Wang Q, Li H, Zhang Y, Pei S (2012) J Mater Sci 47:3602. doi:10.1007/s10853-011-6206-0

    Article  CAS  Google Scholar 

  25. Luan Y, Zhang Y, Zhang H, Li L, Li H, Liu Y (2008) J Appl Polym Sci 107:396

    Article  CAS  Google Scholar 

  26. Su L, Li L, Li H, Zhang Y, Yu W, Zhou C (2009) J Membr Sci 335:118

    Article  CAS  Google Scholar 

  27. Valdes TI, Moussy F (1999) Biosens Bioelectron 14:579

    Article  CAS  Google Scholar 

  28. Galeska I, Chattopadhyay D, Papadimitrakopoulos F (2002) J Macromol Sci A39:1207

    CAS  Google Scholar 

  29. Moussy F, Jakeway S, Harrison DJ, Rajotte RV (1994) Anal Chem 66:3882

    Article  CAS  Google Scholar 

  30. Shang F, Li L, Zhang Y, Li H (2009) J Mater Sci 44:4383. doi:10.1007/s10853-009-3658-6

    Article  CAS  Google Scholar 

  31. Turner RFB, Harrison DJ, Rojotte RV (1991) Biomaterials 12:361

    Article  CAS  Google Scholar 

  32. Kim G, Kim H, Kim IJ, Kim JR, Lee JI, Ree M (2009) J Biomater Sci 20:1687

    Article  CAS  Google Scholar 

  33. Luan Y, Zhang H, Zhang Y, Li L, Li H, Liu Y (2008) J Membr Sci 319:91

    Article  CAS  Google Scholar 

  34. Morimoto N, Iwasaki Y, Nakabayashi N, Ishihara K (2002) Biomaterials 23:4881

    Article  CAS  Google Scholar 

  35. Singhal JP, Ray AR (2002) Biomaterials 23:1139

    Article  CAS  Google Scholar 

  36. Khorasani MT, Mirzadeh H (2004) J Biomater Sci Polym Edn 15:59

    Article  CAS  Google Scholar 

  37. Wang S, Gupta AS, Sagnella S, Barendt PM, Kottke-Marchant K, Marchant RE (2009) J Biomater Sci 20:619

    Article  CAS  Google Scholar 

  38. Persico DF, Gerhardt GE, Lagow RJ (1985) J Am Chem Soc 107:1197

    Article  CAS  Google Scholar 

  39. Liang Z, Chen W, Liu J, Wang S, Zhou Z, Li W, Sun G, Xin Q (2004) J Membr Sci 233:39

    Article  CAS  Google Scholar 

  40. Carla H-W (1979) Polymer 20:371

    Article  Google Scholar 

  41. Miyake H, Sugaya Y, Yamabe M (1998) J Fluor Chem 92:137

    Article  CAS  Google Scholar 

  42. Ratner BD (2000) J Biomater Sci Polym Edn 11:1107

    Article  CAS  Google Scholar 

  43. Sefton MV, Gemmell CH, Gorbet MB (2000) J Biomater Sci Polym Edn 11:1165

    Article  CAS  Google Scholar 

  44. Rubenstein DA, Venkitachalam SM, Zamfir D, Wang F, Lu H, Frame MD, Yin W (2010) J Biomater Sci 21:1713

    Article  CAS  Google Scholar 

  45. Grainger DW, Pavon-Djavid G, Migonney V, Josefowicz M (2003) J Biomater Sci Polym Edn 14:973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the “12th 5-year” National Key Technologies R&D Program of China (2011BAE08B00), the National Science Foundation of China (21104044), the Ph. D. Programs Foundation of Ministry of Education of China (20110073120040), and the Shanghai Leading Academic Discipline Project (No. B202). W. Z. Yuan thanks the Start-up Foundation for New Faculties of Shanghai Jiao Tong University. The authors thank Shanghai Synchrotron Radiation Facility, SSRF, for the SAXS tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supeng Pei.

Additional information

F. Ai and Q. Wang have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, F., Wang, Q., Yuan, W.Z. et al. Biocompatibility and anti-cracking performance of perfluorocarboxylic acid ionomer membranes for implantable biosensors. J Mater Sci 47, 5181–5189 (2012). https://doi.org/10.1007/s10853-012-6397-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6397-z

Keywords

Navigation