Advertisement

Journal of Materials Science

, Volume 47, Issue 13, pp 5169–5180 | Cite as

Microstructure of low temperature processed CNFs/glass nanocomposites

  • M. A. Mazo
  • C. Palencia
  • A. Nistal
  • F. Rubio
  • J. Rubio
  • J. L. Oteo
Article

Abstract

Carbon nanofibers/glass (CNF/G) nanocomposites were obtained from a glass powder of low melting point and pristine CNFs. Green bodies containing from 0 to 22 % (v/v) of CNFs were sintered under nitrogen atmosphere in the 550–700 °C temperature range with different holding times. A fully microstructure characterization, by means of Hg porosimetry and N2 adsorption, was carried out for understanding the CNFs/G composites behavior during the sintering process. This understanding is required to optimize the microstructural design of CNFs/glass nanocomposite materials. During sintering two different and simultaneous phenomena occur the matrix crystallization and the pore formation. The glass matrix crystallization temperature decreases from 650 to 550 °C, when CNFs concentration increases to 22 % (v/v). The glass matrix produces the CNFs degradation and generates gaseous species which lead to homogeneous or foamy materials. This depends on the CNFs concentration and thermal treatment conditions. Foamy nanocomposites present pore size distributions with pores <0.1 and close to 20 μm. The glass matrix wets the CNFs and produce their degradation been of 1 % of carbon loss in all nanocomposites.

Keywords

Pore Size Distribution Spark Plasma Sinter Glass Matrix Glass Particle Mesopore Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by the Ministerio de Ciencia e Innovación of Spain by the Project Ref. MAT2009-14450, and Centro para el Desarrollo Tecnológico Industrial (CDTI) under Project CENIT DOMINO No. CEN-2007-1001. The authors thank C. Merino from Grupo Antolín Ingeniería S.A. for supplying CNFs.

References

  1. 1.
    Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Falvo MR, Clary GJ, Taylor RM, Chi C, Brooks FP Jr, Washburn S, Superfine R (1997) Nature 389:582CrossRefGoogle Scholar
  4. 4.
    Feng Y, Yuan HL, Zhang M (2005) Mater Charact 55:211CrossRefGoogle Scholar
  5. 5.
    George R, Kashyap KT, Rahul R, Yamdagni S (2005) Scr Mater 53:1159CrossRefGoogle Scholar
  6. 6.
    Siegel RW, Chang SK, Ash BJ, Stone J, Ajayan PM, Doremus RW, Schadler LS (2001) Scr Mater 44:2061CrossRefGoogle Scholar
  7. 7.
    Coleman JN, Khan U, Gun’ko YK (2006) Adv Mater 18:689CrossRefGoogle Scholar
  8. 8.
    Palencia C, Mazo MA, Nistal A, Rubio F, Rubio J, Oteo JL (2011) J Nanopart Res 13:6021. doi: 10.1007/s11051-011-0331-1 Google Scholar
  9. 9.
    Thostenson ET, Ren Z, Chou TW (2001) Compos Sci Technol 61:899CrossRefGoogle Scholar
  10. 10.
    Cho J, Boccaccini AR, Shaffer MSP (2009) J Mater Sci 44:1934. doi: 10.1007/s10853-009-3262-9 CrossRefGoogle Scholar
  11. 11.
    Hirsch A (2002) Angew Chem Int Ed 41:1853CrossRefGoogle Scholar
  12. 12.
    Li J, Vergne MJ, Mowles ED, Zhong WH, Hercules DM, Lukehart CM (2005) Carbon 43:2883CrossRefGoogle Scholar
  13. 13.
    Palencia C, Rubio F, Merino C, Rubio J, Oteo JL (2008) J Nano Res 4:33CrossRefGoogle Scholar
  14. 14.
    Palencia C, Rubio J, Rubio F, Fierro JLG, Oteo JL (2011) J Nanosci Nanotechnol 11:4142CrossRefGoogle Scholar
  15. 15.
    Nistal A, Palencia C, Mazo MA, Rubio F, Rubio J, Oteo JL (2011) Carbon 49:1635CrossRefGoogle Scholar
  16. 16.
    Ning J, Zhang J, Pan Y, Guo J (2003) Mater Sci Eng A 357:392CrossRefGoogle Scholar
  17. 17.
    Boccaccini AR, Acevedo DR, Brusatin G, Colombo P (2005) J Eur Ceram Soc 25:1515CrossRefGoogle Scholar
  18. 18.
    Ning J, Zhang J, Pan Y, Guo J (2004) Ceram Int 30:63CrossRefGoogle Scholar
  19. 19.
    Boccaccini AR, Thomas BJC, Brusatin G, Colombo P (2007) J Mater Sci 42:2030. doi: 10.1007/s10853-006-0540-7 CrossRefGoogle Scholar
  20. 20.
    Giovanardi R, Montorsi M, Ori G, Cho J, Subhani T, Boccaccini AR, Siligardi C (2010) J Mater Chem 20:308CrossRefGoogle Scholar
  21. 21.
    Chu BTT, Tobias G, Salzmann CG, Ballesteros B, Grobert N, Todd RI, Green MLH (2008) J Mater Chem 18:5344CrossRefGoogle Scholar
  22. 22.
    Thomas BJC, Shaffer MSP, Boccaccini AR (2009) Composites Part A 40:837CrossRefGoogle Scholar
  23. 23.
    Gou S, Sivakumar R, Kagawa Y (2007) Adv Eng Mater 9:84CrossRefGoogle Scholar
  24. 24.
    Cho J, Inam F, Reece MJ, Chlup Z, Dlouhy I, Shaffer MSP, Boccaccini AR (2011) J Mater Sci 46:4770. doi: 10.1007/s10853-011-5387-x CrossRefGoogle Scholar
  25. 25.
    Ci L, Wei J, Wei B, Liang J, Xu C, Wu D (2001) Carbon 39:329CrossRefGoogle Scholar
  26. 26.
    Martin-Gullon I, Vera J, Conesa JA, González JL, Merino C (2006) Carbon 44:1572CrossRefGoogle Scholar
  27. 27.
    Brunauer S, Emmett PH, Teller E (1938) J Am Ceram Soc 60:309Google Scholar
  28. 28.
    Barret EP, Joyner LG, Halenda PP (1951) J Am Ceram Soc 73:373Google Scholar
  29. 29.
    Sligardi C, D’Arrigo MC, Leonelli C (2000) Am Ceram Soc Bull 79:88Google Scholar
  30. 30.
    Weisenberger M, Martin-Gullon I, Vera-Agullo J, Varela-Rizo H, Merino C, Andrews R, Quian D, Rantell T (2009) Carbon 47:2211CrossRefGoogle Scholar
  31. 31.
    Borrel A, Fernández A, Merino C, Torrecillas R (2010) Int J Mater Res 101:112CrossRefGoogle Scholar
  32. 32.
    Inam F, Yan H, Peijs T, Reece MJ (2010) Compos Sci Technol 70:947CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. A. Mazo
    • 1
  • C. Palencia
    • 1
  • A. Nistal
    • 1
  • F. Rubio
    • 1
  • J. Rubio
    • 1
  • J. L. Oteo
    • 1
  1. 1.Instituto de Cerámica y Vidrio (CSIC)MadridSpain

Personalised recommendations