Journal of Materials Science

, Volume 47, Issue 11, pp 4726–4731 | Cite as

Scale-up synthesis of ZnO nanorods for printing inexpensive ZnO/polymer white light-emitting diode

  • G. Amin
  • M. O. Sandberg
  • A. Zainelabdin
  • S. Zaman
  • O. Nur
  • M. Willander
Article

Abstract

In this study, possibilities of scaling up the synthesis of zinc oxide (ZnO) nanorods (NRs) by the hydrothermal method have been explored. It was found that batches yielding several grams can easily be made using common and easily available materials. Further, a printable composition was fabricated by mixing the obtained ZnO NRs into a common solvent-based screen printable varnish. Scanning electron microscope, high-resolution transmission electron microscope, X-ray diffraction, UV–vis spectroscopy analysis of the scaled up batch indicated that the ZnO nanostructures were of NRs shape, well crystalline and having less defects. Using the ZnO NRs-based printable composition a device fabrication on a flexible substrate was demonstrated, producing a flexible light-emitting device being highly tolerant to bending.

References

  1. 1.
    Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) J Appl Phys 98: 41301. doi:10.1063/1.1992666
  2. 2.
    Ko SH, Lee D, Kang HW, Nam KH, Yeo JY, Hong SJ, Grigoropoulos CP, Sung HJ (2011) Nano Lett 11:666. doi:10.1021/nl1037962 CrossRefGoogle Scholar
  3. 3.
    Zhou JZ, Guo HH, Lin ZH, Feng ZF, Lin LL (2009) J Phys Chem C 113:12546. doi:10.1021/jp902607c CrossRefGoogle Scholar
  4. 4.
    Israr MQ, Sadaf JR, Nur O, Willander M, Salman S, Danielsson B (2011) Appl Phys Lett 98:253705. doi:10.1063/1.3599583 CrossRefGoogle Scholar
  5. 5.
    Willander M, Nur O, Zhao QX, Yang LL, Lorenz M, Cao BQ, Zuniga Perez J, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Che Mofor A, Postels B, Waag A, Boukos N, Travlos A, Kwack HS, Guinard J, Le Si Dang D (2009) Nanotechnology 20:332001. doi:10.1088/0957-4484/20/33/332001 CrossRefGoogle Scholar
  6. 6.
    Seminario JM, Gimenez AJ, Yanez-Limon JM (2011) J Phys Chem C 115:282. doi:10.1021/jp107812w CrossRefGoogle Scholar
  7. 7.
    Wei M, Han JB, Fan FR, Xu C, Lin SS, Duan X, Wang ZL (2010) Nanotechnology 21: 035102Google Scholar
  8. 8.
    Zhang Y, Zhang XM, Lu MY, Chen LJ, Wang ZL (2009) Adv Mater 21:2767. doi:10.1002/adma.200802686 CrossRefGoogle Scholar
  9. 9.
    Wu JJ, Wong DKP (2007) Adv Mater 19:2015. doi:10.1002/adma.200602052 CrossRefGoogle Scholar
  10. 10.
    Ting JM, Chen MT (2006) Thin Solid Films 494:250. doi:10.1016/j.tsf.2005.08.134 CrossRefGoogle Scholar
  11. 11.
    Shi SB, Xu JP, Zhang XS, Li L (2011) J Appl Phys 109. doi:10.1063/1.3586243
  12. 12.
    Zhao QX, Klason P, Willander M (2007) Appl Phys A 88:27. doi:10.1007/s00339-007-3958-0 CrossRefGoogle Scholar
  13. 13.
    Yuan FL, Peng H, Bai LY, Li JL, Chen YF (2007) J Phys Chem C 111:194. doi:10.1021/jp065390b CrossRefGoogle Scholar
  14. 14.
    Wang ZL, Xu S, Lao C, Weintraub B (2008) J Mater Res 23:2072. doi:10.1557/Jmr.2008.0274 CrossRefGoogle Scholar
  15. 15.
    Rogers JA, Baca AJ, Yu KJ, Xiao JL, Wang SD, Yoon J, Ryu JH, Stevenson D, Nuzzo RG, Rockett AA, Huang YG (2010) Energy Environ Sci 3:208. doi:10.1039/b920862c CrossRefGoogle Scholar
  16. 16.
    Yu H, Zhang Z, Han M, Hao X, Zhu F (2005) J Am Chem Soc 127:2378. doi:10.1021/ja043121y CrossRefGoogle Scholar
  17. 17.
    Gaikwad AM, Whiting GL, Steingart DA, Arias AC (2011) Adv Mater 23:3251. doi:10.1002/adma.201100894 CrossRefGoogle Scholar
  18. 18.
    Zainelabdin A, Zaman S, Amin G, Nur O, Willander M (2010) Nanoscale Res Lett 5:1442. doi:10.1007/s11671-010-9659-1 CrossRefGoogle Scholar
  19. 19.
    Toyama T, Takeuchi H, Yamaguchi D, Kawasaki H, Itatani K, Okamoto H (2010) J Appl Phys 108. doi:10.1063/1.3493157
  20. 20.
    Pacholski C, Kornowski A, Weller H (2002) Angew Chem Int Ed Engl 41:1188CrossRefGoogle Scholar
  21. 21.
    Wang M, Ye CH, Zhang Y, Hua GM, Wang HX, Kong MG, Zhang LD (2006) J Cryst Growth 291:334. doi:10.1016/j.jcrysgro.2006.03.033 CrossRefGoogle Scholar
  22. 22.
    Yang Z, Zong XL, Ye ZZ, Zhao BH, Wang QL, Wang P (2010) Biomaterials 31:7534. doi:10.1016/j.biomaterials.2010.06.019 CrossRefGoogle Scholar
  23. 23.
    Olson DC, Shaheen SE, Collins RT, Ginley DS (2007) J Phys Chem C 111:16670CrossRefGoogle Scholar
  24. 24.
    Bolink HJ, Coronado E, Sessolo M (2009) Chem Mater 21:439. doi:10.1021/Cm8031362 CrossRefGoogle Scholar
  25. 25.
    Olson DC, Lee YJ, White MS, Kopidakis N, Shaheen SE, Ginley DS, Voigt JA, Hsu JWP (2007) J Phys Chem C 111:16640. doi:10.1021/Jp0757816 CrossRefGoogle Scholar
  26. 26.
    Chen LJ, Manekkathodi A, Lu MY, Wang CW (2010) Adv Mater 22:4059. doi:10.1002/adma.201001289 CrossRefGoogle Scholar
  27. 27.
    Wadeasa A, Nur O, Willander M (2009) Nanotechnology 20:065710CrossRefGoogle Scholar
  28. 28.
    Djurisic AB, Leung YH (2006) Small 2:944. doi:10.1002/smll.200600134 CrossRefGoogle Scholar
  29. 29.
    Montilla F, Mallavia R (2007) Adv Funct Mater 17:71. doi:10.1002/adfm.200600141 CrossRefGoogle Scholar
  30. 30.
    Zhao W, Cao T, White JM (2004) Adv Funct Mater 14:783. doi:10.1002/adfm.200305173 CrossRefGoogle Scholar
  31. 31.
    Wadeasa A, Tzamalis G, Sehati P, Nur O, Fahlman M, Willander M, Berggren M, Crispin X (2010) Chem Phys Lett 490:200. doi:10.1016/j.cplett.2010.03.050 CrossRefGoogle Scholar
  32. 32.
    Lee CY, Wang JY, Chou Y, Cheng CL, Chao CH, Shiu SC, Hung SC, Chao JJ, Liu MY, Su WF, Chen YF, Lin CF (2009) Nanotechnology 20(42): 425202Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • G. Amin
    • 1
  • M. O. Sandberg
    • 2
  • A. Zainelabdin
    • 1
  • S. Zaman
    • 1
  • O. Nur
    • 1
  • M. Willander
    • 1
  1. 1.Department of Science and Technology, Campus NorrköpingLinköping UniversityNorrköpingSweden
  2. 2.Acreo AB, Printed ElectronicsNorrköpingSweden

Personalised recommendations