Skip to main content
Log in

Preparation of mesoscopic gold rings and split rings by selective wetting of the contact points between the spheres within colloidal crystals

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rings and split rings of sub-micrometer size are prepared by the infiltration of colloidal crystals of spherical silica particles with diameters of about 1 μm by diluted solutions of tetrachloroauric acid in butanone, followed by the evaporation of the butanone, the annealing of the samples at elevated temperatures and the removal of the silica spheres with hydrofluoric acid. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and electron backscatter diffraction investigations reveal that the obtained rings and split rings are made out of metallic gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We obtain an average value for the outer diameter of 405 nm ± 130 nm for 274 investigated rings and an average value for the inner diameter of 130 nm ± 60 nm for 144 investigated rings. (The measurement is limited due to the resolution of the SEM images. Thus, not all images useful for the determination of the outer diameters are suitable to determine the inner diameters.)

  2. A detailed counting of 1142 objects obtained from 3 independent experiments reveals 29.51% of completely closed rings.

  3. According to Channel 5 (software manual, HKL Technology, 2004): ‘A number under 1° is acceptable for most systems’ (p. 5.11) & ‘Ideally, the MAD number should be below 0.5°’ (p. 5.35).

References

  1. Matveev KA, Larkin AI, Glazman LI (2002) Phys Rev Lett 89(9):096802

    Article  CAS  Google Scholar 

  2. Rabaud W, Saminadayar L, Mailly D, Hasselbach K, Benoit A, Etienne B (2001) Phys Rev Lett 86(14):3124

    Article  CAS  Google Scholar 

  3. Bagci VMK, Gülseren O, Yildirim T, Gedik Z, Ciraci S (2002) Phys Rev B 66:045409

    Article  Google Scholar 

  4. Jariwala EMQ, Mohanty P, Ketchen MB, Webb RA (2001) Phys Rev Lett 86(8):1594

    Article  CAS  Google Scholar 

  5. Bluhm H, Koshnick NC, Bert JA, Huber ME, Moler KA (2009) Phys Rev Lett 102(13):136802

    Article  Google Scholar 

  6. Clark AW, Cooper JM (2010) Adv Mater 22(36):4025

    Article  CAS  Google Scholar 

  7. Aizpurua J, Hanarp P, Sutherland DS, Käll M, Bryant GW, de Abajo FJG (2003) Phys Rev Lett 90:057401

    Article  CAS  Google Scholar 

  8. Aizpurua J, Blanco L, Hanarp P, Sutherland DS, Käll M, Bryant GW, de Abajo FJG (2004) J Quant Spectrosc Radiat Transfer 89:11

    Article  CAS  Google Scholar 

  9. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Phys Rev Lett 84:4184

    Article  CAS  Google Scholar 

  10. Pendry JB (2004) Contemp Phys 45(3):191

    Article  CAS  Google Scholar 

  11. Liu Y, Zhang X (2011) Chem Soc Rev 40(5):2494

    Article  CAS  Google Scholar 

  12. Chen H (2011) J Mater Chem 21(18):6452

    Article  CAS  Google Scholar 

  13. Winzer M, Kleiber M, Dix N, Wiesendanger R (1996) Appl Phys A-Mater 63:617

    CAS  Google Scholar 

  14. Yi DK, Kim MJ, Turner L, Breuer KS, Kim D-Y (2006) Biotechnol Lett 28:169

    Article  CAS  Google Scholar 

  15. Zheng YB, Wang SJ, Huan ACH, Wang YH (2006) J Non-Cryst Solids 352:2532

    Article  CAS  Google Scholar 

  16. Sun Z, Li Y, Zhang J, Li Y, Zhao Z, Zhang K, Zhang G, Guo J, Yang B (2008) Adv Funct Mater 18:4036

    Article  CAS  Google Scholar 

  17. Bayati M, Patoka P, Giersig M, Savinova ER (2010) Langmuir 26(5):3549

    Article  CAS  Google Scholar 

  18. Jia D, Goonewardene A (2006) Appl Phys Lett 88(5):053105

    Article  Google Scholar 

  19. Kosiorek A, Kandulski W, Chudzinski P, Kempa K, Giersig M (2004) Nano Lett 4(7):1359

    Article  CAS  Google Scholar 

  20. Zhu FQ, Fan D, Zhu X, Zhu J-G, Cammarata RC, Chien C-L (2004) Adv Mater 16(23–24):2155

    Article  CAS  Google Scholar 

  21. Teo SL, Lin VK, Marty R, Large N, Llado EA, Arbounet A, Girard C, Aizpurua J, Tripathy S, Mlayah A (2010) Opt Express 18(21):22271

    Article  CAS  Google Scholar 

  22. Raz Z, Ritter D, Bahir G (2003) Appl Phys Lett 82(11):1706

    Article  CAS  Google Scholar 

  23. Garcia JM, Medeiros-Ribeiro G, Schmidt K, Ngo T, Feng JL, Lorke A, Kotthaus J, Petroff PM (1997) Appl Phys Lett 71:2014

    Article  CAS  Google Scholar 

  24. Zhou WL, He J, Fang J, Huynh T-A, Kennedy TJ, Stokes KL, O′Connor JC (2003) J Appl Phys 93(10):7340

    Article  CAS  Google Scholar 

  25. Suematsu NJ, Ogawa Y, Yamamoto Y, Yamaguchi T (2007) J Colloid Interf Sci 310:648

    Article  CAS  Google Scholar 

  26. Lu G, Li W, Yao J, Zhang G, Yang B, Shen J (2002) Adv Mater 12(15):1049

    Article  Google Scholar 

  27. Hobbs KL, Larson PR, Lian GD, Keay JC, Johnson MB (2004) Nano Lett 4(1):167

    Article  CAS  Google Scholar 

  28. Yang D, Meng G, Zhu C, Zhu X (2009) Chem Commun 46:7110

    Article  Google Scholar 

  29. Liusman C, Li S, Chen X, Wie W, Zhang H, Schatz GC, Boey F, Mirkin CA (2010) ACS Nano 4(12):7676

    Article  CAS  Google Scholar 

  30. Pearson DH, Tonucci RJ, Bussmann KM, Bolden EA (1999) Adv Mater 11(9):769

    Article  CAS  Google Scholar 

  31. Yi DK, Kim D-Y (2003) Nano Lett 3(2):207

    Article  CAS  Google Scholar 

  32. Dong W, Guo X, Wang S-Z, Wang Z-L, Ming N-B (2008) Chin Phys Lett 25(8):2957

    Article  CAS  Google Scholar 

  33. Marczewski D, Goedel WA (2005) Nano Lett 5:295

    Article  CAS  Google Scholar 

  34. Ren Z, Zhang X, Zhang J, Li X, Yang B (2009) Nanotechnology 20:065305

    Article  Google Scholar 

  35. Xu H, Goedel WA (2003) Angew Chem 115:4845

    Article  Google Scholar 

  36. Xu H, Goedel WA (2003) Angew Chem Int Ed 42:4696

    Article  CAS  Google Scholar 

  37. Yan F, Goedel WA (2004) Nano Lett 4:1193

    Article  CAS  Google Scholar 

  38. Zhang XW, Chen NF, Yan F, Goedel WA (2005) Appl Phys Lett 86:203102

    Article  Google Scholar 

  39. Zhang J, Li Y, Zhang X, Yang B (2010) Adv Mater 22:4249

    Article  CAS  Google Scholar 

  40. Li J-R, Garno JC (2008) Nano Lett 8(7):1916

    Article  CAS  Google Scholar 

  41. Li J-R, Lusker KL, Yu J–J, Garno JC (2009) ACS Nano 3:2023

    Article  CAS  Google Scholar 

  42. Hong SW, Giri S, Lin VS-Y, Lin Z (2006) Chem Mater 18(22):5164

    Article  CAS  Google Scholar 

  43. Hong SW, Xu J, Lin Z (2006) Nano Lett 6(12):2949

    Article  CAS  Google Scholar 

  44. Chen X, Chen Z, Fu N, Lu G, Yang B (2003) Adv. Mater. 15(17):1413

    Article  CAS  Google Scholar 

  45. Cai Y, Ocko BM (2005) Langmuir 21(20):9274

    Article  CAS  Google Scholar 

  46. Sun F, Yu JC, Wang X (2006) Chem Mater 18(16):3774

    Article  CAS  Google Scholar 

  47. Kim MH, Choi J-Y, Choi HK, Yoon S-M, Park O–O, Yi DK, Choi SJ, Shin H-J (2008) Adv Mater 20(3):457

    Article  CAS  Google Scholar 

  48. Chen J, Liao W-S, Chen X, Yang T, Wark SE, Son DH, Batteas JD, Cremer PS (2009) ACS Nano 3(1):173

    Article  CAS  Google Scholar 

  49. McLellan JM, Geissler M, Xia Y (2004) J Am Chem Soc 126:10830

    Article  CAS  Google Scholar 

  50. Velev OD, Lenhoff AM (2000) Curr Opin Colloid In 5:56

    Article  CAS  Google Scholar 

  51. Tessier PM, Velev OD, Kalambur AT, Lenhoff AM, Rabolt JF, Kaler EW (2001) Adv Mater 13(6):396

    Article  CAS  Google Scholar 

  52. Meng T, Zhu M, Pan J, Zhan P, Wang Z (2008) Jpn J Appl Phys 47(10):8109

    Article  CAS  Google Scholar 

  53. Yan F, Goedel WA (2005) Angew Chem 117:2121

    Article  Google Scholar 

  54. Yan F, Goedel WA (2005) Angew Chem Int Ed 44:2084

    Article  CAS  Google Scholar 

  55. Yu X, Zhang H, Oliverio JK, Braun PV (2009) Nano Lett 9(12):4424

    Article  CAS  Google Scholar 

  56. Stöber W, Fink A, Bohn E (1968) J Colloid Interf Sci 26:62

    Article  Google Scholar 

  57. Philipse AP, Vrij A (1989) J Colloid Interf Sci 128(1):121

    Article  CAS  Google Scholar 

  58. Structural data of Si: Data base of the software Channel 5 (HKL Technology, DK; today: Oxford Instruments, UK); original reference according to the manufacturer: Okada Y, Tokumaru Y (1984) J Appl Phys 56(2):314 & Kohno A, Aomine N, Soejima Y, Okazaki A (1994) Jpn J Appl Phys 33(1,9A):5073

  59. Structural data of Au: Data base of the software Channel 5 (HKL Technology, DK; today: Oxford Instruments, UK); original reference according to the manufacturer: Jette ER, Foote F (1935) J Chem Phys 3(10):605 & Maeland A, Flanagan TB (1964) Can J Phys 42(11):2364

  60. Structural data of AuCl3: Clark ES, Templeton DH, MacGillavry CH (1958) Acta Cryst 11:284

  61. Structural data of AuF3: Einstein FWB, Rao PR, Trotter J, Barlett N (1967) J Chem Soc (A) 478

  62. Kitagawa H, Kojima N, Nakajima T (1991) J Chem Soc Dalton Trans (11):3121

  63. Salama TM, Shido T, Minagawa H, Ichikawa M (1994) J Catal 152(2):322

    Article  Google Scholar 

  64. Kim SM, Kim KK, Jo YW, Park MH, Chae SJ, Duong DL, Yang CW, Kong J, Lee YH (2011) ACS Nano 5(2):1236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Baumann, Solid Surfaces Analysis Group, Chemnitz University of Technology, for the kind support during the SEM measurements. We also thank O. Vilkov and W. Braun from the Russian-German Laboratory at BESSY II (Helmholtz-Centre, Berlin), for their helpful assistance with the XPS measurements. H. Schletter acknowledges financial support via Landesinnovationspromotion (financed by the European Social Fund and the Free State of Saxony). D. Lehmann acknowledges financial support by the Bundesministerium für Bildung und Forschung (project 03IS2011 ‘nanett’). F. Haidu acknowledges financial support by the Deutsche Forschungsgemeinschaft Research Unit 1154 ‘Towards Molecular Spintronics’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner A. Goedel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufmann, S., Schletter, H., Lehmann, D. et al. Preparation of mesoscopic gold rings and split rings by selective wetting of the contact points between the spheres within colloidal crystals. J Mater Sci 47, 4530–4539 (2012). https://doi.org/10.1007/s10853-012-6307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6307-4

Keywords

Navigation