Journal of Materials Science

, Volume 47, Issue 11, pp 4530–4539 | Cite as

Preparation of mesoscopic gold rings and split rings by selective wetting of the contact points between the spheres within colloidal crystals

  • Sabine Kaufmann
  • Herbert Schletter
  • Daniel Lehmann
  • Francisc Haidu
  • Dietrich R. T. Zahn
  • Michael Hietschold
  • Werner A. Goedel


Rings and split rings of sub-micrometer size are prepared by the infiltration of colloidal crystals of spherical silica particles with diameters of about 1 μm by diluted solutions of tetrachloroauric acid in butanone, followed by the evaporation of the butanone, the annealing of the samples at elevated temperatures and the removal of the silica spheres with hydrofluoric acid. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and electron backscatter diffraction investigations reveal that the obtained rings and split rings are made out of metallic gold.


Silica Sphere Colloidal Crystal Metallic Gold Split Ring Gold Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank G. Baumann, Solid Surfaces Analysis Group, Chemnitz University of Technology, for the kind support during the SEM measurements. We also thank O. Vilkov and W. Braun from the Russian-German Laboratory at BESSY II (Helmholtz-Centre, Berlin), for their helpful assistance with the XPS measurements. H. Schletter acknowledges financial support via Landesinnovationspromotion (financed by the European Social Fund and the Free State of Saxony). D. Lehmann acknowledges financial support by the Bundesministerium für Bildung und Forschung (project 03IS2011 ‘nanett’). F. Haidu acknowledges financial support by the Deutsche Forschungsgemeinschaft Research Unit 1154 ‘Towards Molecular Spintronics’.

Supplementary material

10853_2012_6307_MOESM1_ESM.pdf (3.2 mb)
Supplementary material 1 (PDF 3272 kb)


  1. 1.
    Matveev KA, Larkin AI, Glazman LI (2002) Phys Rev Lett 89(9):096802CrossRefGoogle Scholar
  2. 2.
    Rabaud W, Saminadayar L, Mailly D, Hasselbach K, Benoit A, Etienne B (2001) Phys Rev Lett 86(14):3124CrossRefGoogle Scholar
  3. 3.
    Bagci VMK, Gülseren O, Yildirim T, Gedik Z, Ciraci S (2002) Phys Rev B 66:045409CrossRefGoogle Scholar
  4. 4.
    Jariwala EMQ, Mohanty P, Ketchen MB, Webb RA (2001) Phys Rev Lett 86(8):1594CrossRefGoogle Scholar
  5. 5.
    Bluhm H, Koshnick NC, Bert JA, Huber ME, Moler KA (2009) Phys Rev Lett 102(13):136802CrossRefGoogle Scholar
  6. 6.
    Clark AW, Cooper JM (2010) Adv Mater 22(36):4025CrossRefGoogle Scholar
  7. 7.
    Aizpurua J, Hanarp P, Sutherland DS, Käll M, Bryant GW, de Abajo FJG (2003) Phys Rev Lett 90:057401CrossRefGoogle Scholar
  8. 8.
    Aizpurua J, Blanco L, Hanarp P, Sutherland DS, Käll M, Bryant GW, de Abajo FJG (2004) J Quant Spectrosc Radiat Transfer 89:11CrossRefGoogle Scholar
  9. 9.
    Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Phys Rev Lett 84:4184CrossRefGoogle Scholar
  10. 10.
    Pendry JB (2004) Contemp Phys 45(3):191CrossRefGoogle Scholar
  11. 11.
    Liu Y, Zhang X (2011) Chem Soc Rev 40(5):2494CrossRefGoogle Scholar
  12. 12.
    Chen H (2011) J Mater Chem 21(18):6452CrossRefGoogle Scholar
  13. 13.
    Winzer M, Kleiber M, Dix N, Wiesendanger R (1996) Appl Phys A-Mater 63:617Google Scholar
  14. 14.
    Yi DK, Kim MJ, Turner L, Breuer KS, Kim D-Y (2006) Biotechnol Lett 28:169CrossRefGoogle Scholar
  15. 15.
    Zheng YB, Wang SJ, Huan ACH, Wang YH (2006) J Non-Cryst Solids 352:2532CrossRefGoogle Scholar
  16. 16.
    Sun Z, Li Y, Zhang J, Li Y, Zhao Z, Zhang K, Zhang G, Guo J, Yang B (2008) Adv Funct Mater 18:4036CrossRefGoogle Scholar
  17. 17.
    Bayati M, Patoka P, Giersig M, Savinova ER (2010) Langmuir 26(5):3549CrossRefGoogle Scholar
  18. 18.
    Jia D, Goonewardene A (2006) Appl Phys Lett 88(5):053105CrossRefGoogle Scholar
  19. 19.
    Kosiorek A, Kandulski W, Chudzinski P, Kempa K, Giersig M (2004) Nano Lett 4(7):1359CrossRefGoogle Scholar
  20. 20.
    Zhu FQ, Fan D, Zhu X, Zhu J-G, Cammarata RC, Chien C-L (2004) Adv Mater 16(23–24):2155CrossRefGoogle Scholar
  21. 21.
    Teo SL, Lin VK, Marty R, Large N, Llado EA, Arbounet A, Girard C, Aizpurua J, Tripathy S, Mlayah A (2010) Opt Express 18(21):22271CrossRefGoogle Scholar
  22. 22.
    Raz Z, Ritter D, Bahir G (2003) Appl Phys Lett 82(11):1706CrossRefGoogle Scholar
  23. 23.
    Garcia JM, Medeiros-Ribeiro G, Schmidt K, Ngo T, Feng JL, Lorke A, Kotthaus J, Petroff PM (1997) Appl Phys Lett 71:2014CrossRefGoogle Scholar
  24. 24.
    Zhou WL, He J, Fang J, Huynh T-A, Kennedy TJ, Stokes KL, O′Connor JC (2003) J Appl Phys 93(10):7340CrossRefGoogle Scholar
  25. 25.
    Suematsu NJ, Ogawa Y, Yamamoto Y, Yamaguchi T (2007) J Colloid Interf Sci 310:648CrossRefGoogle Scholar
  26. 26.
    Lu G, Li W, Yao J, Zhang G, Yang B, Shen J (2002) Adv Mater 12(15):1049CrossRefGoogle Scholar
  27. 27.
    Hobbs KL, Larson PR, Lian GD, Keay JC, Johnson MB (2004) Nano Lett 4(1):167CrossRefGoogle Scholar
  28. 28.
    Yang D, Meng G, Zhu C, Zhu X (2009) Chem Commun 46:7110CrossRefGoogle Scholar
  29. 29.
    Liusman C, Li S, Chen X, Wie W, Zhang H, Schatz GC, Boey F, Mirkin CA (2010) ACS Nano 4(12):7676CrossRefGoogle Scholar
  30. 30.
    Pearson DH, Tonucci RJ, Bussmann KM, Bolden EA (1999) Adv Mater 11(9):769CrossRefGoogle Scholar
  31. 31.
    Yi DK, Kim D-Y (2003) Nano Lett 3(2):207CrossRefGoogle Scholar
  32. 32.
    Dong W, Guo X, Wang S-Z, Wang Z-L, Ming N-B (2008) Chin Phys Lett 25(8):2957CrossRefGoogle Scholar
  33. 33.
    Marczewski D, Goedel WA (2005) Nano Lett 5:295CrossRefGoogle Scholar
  34. 34.
    Ren Z, Zhang X, Zhang J, Li X, Yang B (2009) Nanotechnology 20:065305CrossRefGoogle Scholar
  35. 35.
    Xu H, Goedel WA (2003) Angew Chem 115:4845CrossRefGoogle Scholar
  36. 36.
    Xu H, Goedel WA (2003) Angew Chem Int Ed 42:4696CrossRefGoogle Scholar
  37. 37.
    Yan F, Goedel WA (2004) Nano Lett 4:1193CrossRefGoogle Scholar
  38. 38.
    Zhang XW, Chen NF, Yan F, Goedel WA (2005) Appl Phys Lett 86:203102CrossRefGoogle Scholar
  39. 39.
    Zhang J, Li Y, Zhang X, Yang B (2010) Adv Mater 22:4249CrossRefGoogle Scholar
  40. 40.
    Li J-R, Garno JC (2008) Nano Lett 8(7):1916CrossRefGoogle Scholar
  41. 41.
    Li J-R, Lusker KL, Yu J–J, Garno JC (2009) ACS Nano 3:2023CrossRefGoogle Scholar
  42. 42.
    Hong SW, Giri S, Lin VS-Y, Lin Z (2006) Chem Mater 18(22):5164CrossRefGoogle Scholar
  43. 43.
    Hong SW, Xu J, Lin Z (2006) Nano Lett 6(12):2949CrossRefGoogle Scholar
  44. 44.
    Chen X, Chen Z, Fu N, Lu G, Yang B (2003) Adv. Mater. 15(17):1413CrossRefGoogle Scholar
  45. 45.
    Cai Y, Ocko BM (2005) Langmuir 21(20):9274CrossRefGoogle Scholar
  46. 46.
    Sun F, Yu JC, Wang X (2006) Chem Mater 18(16):3774CrossRefGoogle Scholar
  47. 47.
    Kim MH, Choi J-Y, Choi HK, Yoon S-M, Park O–O, Yi DK, Choi SJ, Shin H-J (2008) Adv Mater 20(3):457CrossRefGoogle Scholar
  48. 48.
    Chen J, Liao W-S, Chen X, Yang T, Wark SE, Son DH, Batteas JD, Cremer PS (2009) ACS Nano 3(1):173CrossRefGoogle Scholar
  49. 49.
    McLellan JM, Geissler M, Xia Y (2004) J Am Chem Soc 126:10830CrossRefGoogle Scholar
  50. 50.
    Velev OD, Lenhoff AM (2000) Curr Opin Colloid In 5:56CrossRefGoogle Scholar
  51. 51.
    Tessier PM, Velev OD, Kalambur AT, Lenhoff AM, Rabolt JF, Kaler EW (2001) Adv Mater 13(6):396CrossRefGoogle Scholar
  52. 52.
    Meng T, Zhu M, Pan J, Zhan P, Wang Z (2008) Jpn J Appl Phys 47(10):8109CrossRefGoogle Scholar
  53. 53.
    Yan F, Goedel WA (2005) Angew Chem 117:2121CrossRefGoogle Scholar
  54. 54.
    Yan F, Goedel WA (2005) Angew Chem Int Ed 44:2084CrossRefGoogle Scholar
  55. 55.
    Yu X, Zhang H, Oliverio JK, Braun PV (2009) Nano Lett 9(12):4424CrossRefGoogle Scholar
  56. 56.
    Stöber W, Fink A, Bohn E (1968) J Colloid Interf Sci 26:62CrossRefGoogle Scholar
  57. 57.
    Philipse AP, Vrij A (1989) J Colloid Interf Sci 128(1):121CrossRefGoogle Scholar
  58. 58.
    Structural data of Si: Data base of the software Channel 5 (HKL Technology, DK; today: Oxford Instruments, UK); original reference according to the manufacturer: Okada Y, Tokumaru Y (1984) J Appl Phys 56(2):314 & Kohno A, Aomine N, Soejima Y, Okazaki A (1994) Jpn J Appl Phys 33(1,9A):5073Google Scholar
  59. 59.
    Structural data of Au: Data base of the software Channel 5 (HKL Technology, DK; today: Oxford Instruments, UK); original reference according to the manufacturer: Jette ER, Foote F (1935) J Chem Phys 3(10):605 & Maeland A, Flanagan TB (1964) Can J Phys 42(11):2364Google Scholar
  60. 60.
    Structural data of AuCl3: Clark ES, Templeton DH, MacGillavry CH (1958) Acta Cryst 11:284Google Scholar
  61. 61.
    Structural data of AuF3: Einstein FWB, Rao PR, Trotter J, Barlett N (1967) J Chem Soc (A) 478Google Scholar
  62. 62.
    Kitagawa H, Kojima N, Nakajima T (1991) J Chem Soc Dalton Trans (11):3121Google Scholar
  63. 63.
    Salama TM, Shido T, Minagawa H, Ichikawa M (1994) J Catal 152(2):322CrossRefGoogle Scholar
  64. 64.
    Kim SM, Kim KK, Jo YW, Park MH, Chae SJ, Duong DL, Yang CW, Kong J, Lee YH (2011) ACS Nano 5(2):1236CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sabine Kaufmann
    • 1
  • Herbert Schletter
    • 2
  • Daniel Lehmann
    • 3
  • Francisc Haidu
    • 3
  • Dietrich R. T. Zahn
    • 3
  • Michael Hietschold
    • 2
  • Werner A. Goedel
    • 1
  1. 1.Physical ChemistryChemnitz University of TechnologyChemnitzGermany
  2. 2.Solid Surfaces Analysis Group, Institute of PhysicsChemnitz University of TechnologyChemnitzGermany
  3. 3.Semiconductor Physics, Institute of PhysicsChemnitz University of TechnologyChemnitzGermany

Personalised recommendations