Journal of Materials Science

, Volume 47, Issue 10, pp 4363–4369 | Cite as

Synthesis of multilayered composite nanotube heterostructure; SiC–SiO2, C–SiO2, and C–SiC–SiO2 nanotubes

  • T. Taguchi
  • S. Shamoto


Three types of composite nanotube heterostructures (two double-layered and one triple-layered structure) are synthesized by simple heat treatment, forming SiC–SiO2, C–SiO2, and C–SiC–SiO2 composite coaxial nanotubes. These multilayered composite nanotubes consist of several components with different electrical properties, for example, metal, semiconductor, and insulator components. In particular, C–SiC–SiO2 triple-layered nanotubes with metallic, semiconducting, and insulating layers are synthesized for the first time. These multilayered nanotubes can be expected to find applications in nanoscale heterostructure electronic and optical devices.


SiO2 Intermediate Layer SiO2 Layer Composite Nanotubes Template Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was partly supported by a Grant-in-Aid for Young Scientists (B) (No. 23760646) from the Ministry of Education, Science, Sports and Culture of Japan.


  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353CrossRefGoogle Scholar
  3. 3.
    Dai H (2002) Surf Sci 500:218CrossRefGoogle Scholar
  4. 4.
    Li Y, Qian F, Xiang J, Lieber CM (2006) Mater Today 9(10):18CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Suenaga K, Colliex C, Iijima S (1998) Science 281:973CrossRefGoogle Scholar
  6. 6.
    Suenaga K, Zhang Y, Iijima S (2000) Appl Phys Lett 76:1564CrossRefGoogle Scholar
  7. 7.
    Zhong B, Song L, Huang X, Zhang X (2011) J Mater Chem 21:14432CrossRefGoogle Scholar
  8. 8.
    Yang Y, Qiu S, Cui W, Zhao Q, Cheng X, Li RKY, Xie X, Mai Y-W (2009) J Mater Sci 44:4539. doi: 10.1007/s10853-009-3687-1 CrossRefGoogle Scholar
  9. 9.
    Satishkumar B, Govindaraj A, Vogl E, Basumallick L, Rao C (1997) J Mater Res 12:600CrossRefGoogle Scholar
  10. 10.
    Rao C, Satishkumar B, Govindaraj A (1997) Chem Commun 16:1581CrossRefGoogle Scholar
  11. 11.
    Lehman JH, Hurst KE, Singh G, Mansfield E, Perkins JD, Cromer CL (2010) J Mater Sci 45:4251. doi: 1007/s10853-010-4611-4 CrossRefGoogle Scholar
  12. 12.
    Zhang M, Bando Y, Wada K (2001) J Mater Res 16:1408CrossRefGoogle Scholar
  13. 13.
    Miyao T, Saika T, Saito Y, Naito S (2003) J Mater Sci Lett 22:543CrossRefGoogle Scholar
  14. 14.
    Xie Y-L, Li Z-X, Xu Z-G, Zhang H-L (2011) Electrochem Commun 13:788CrossRefGoogle Scholar
  15. 15.
    Yin L, Bando Y, Zhu Y, Golberg D, Li M (2004) Adv Mater 16:929CrossRefGoogle Scholar
  16. 16.
    Li Y, Bando Y, Golberg D, Uemura Y (2004) Chem Phys Lett 393:128CrossRefGoogle Scholar
  17. 17.
    Zhu W, Liu X, Liu H, Tong D, Yang J, Peng J (2010) J Am Chem Soc 132:12619CrossRefGoogle Scholar
  18. 18.
    Luo X, Ma W, Zhou Y, Liu D, Yang B, Dai Y (2010) Nanoscale Res Lett 5:252CrossRefGoogle Scholar
  19. 19.
    Mishra SB, Mishra AK, Krause RW, Mamba BB (2009) J Am Ceram Soc 92:3052CrossRefGoogle Scholar
  20. 20.
    Meng A, Li Z, Zhang J, Gao L, Li H (2007) J Cryst Grow 308:263CrossRefGoogle Scholar
  21. 21.
    Fissel A, Schroter B, Richter W (1995) Appl Phys Lett 66:3182CrossRefGoogle Scholar
  22. 22.
    Yu MB, Rusli Yoon SF, Xu SJ, Chew K, Cui J, Ahn J, Zhang Q (2000) Thin Solid Films 377–378:177CrossRefGoogle Scholar
  23. 23.
    Wu XL, Fan JY, Qui T, Yang X, Siu GG, Chu PK (2005) Phys Rev Lett 94:026102CrossRefGoogle Scholar
  24. 24.
    Mitchell D, Lee S, Trofin L, Li N, Nevanen T, Soderlund H, Martin C (2002) J Am Chem Soc 124:11864CrossRefGoogle Scholar
  25. 25.
    Nishikawa H, Shiroyama T, Nakamura R, Ohki Y (1992) Phys Rev B 45:586CrossRefGoogle Scholar
  26. 26.
    Zhang M, Ciocan E, Bando Y, Wada K, Cheng LL, Pirouz P (2002) Appl Phys Lett 80:491CrossRefGoogle Scholar
  27. 27.
    Keller N, Pham-Huu C, Ehret G, Keller V, Ledoux MJ (2003) Carbon 41:2131CrossRefGoogle Scholar
  28. 28.
    Hu JQ, Bando Y, Zhan JH, Golberg D (2004) Appl Phys Lett 85:2932CrossRefGoogle Scholar
  29. 29.
    Li B, Wu R, Pan Y, Wu L, Yang G, Chen J, Zhu Q (2008) J Alloys Comp 462:446CrossRefGoogle Scholar
  30. 30.
    Ogihara H, Takenaka S, Yamanaka I, Tanabe E, Genseki A, Otsuka K (2006) Chem Mater 18:996CrossRefGoogle Scholar
  31. 31.
    Yu J, Bai X, Suh J, Lee SB, Son SJ (2009) J Am Chem Soc 131:15574CrossRefGoogle Scholar
  32. 32.
    Yang X, Tang H, Cao K, Song H, Sheng W, Wu Q (2011) J Mater Chem 21:6122CrossRefGoogle Scholar
  33. 33.
    Taguchi T, Igawa N, Yamamoto H, Jitsukawa S (2005) J Am Ceram Soc 88:459CrossRefGoogle Scholar
  34. 34.
    Taguchi T, Igawa N, Yamamoto H, Shamoto S (2005) Phys E 28:431CrossRefGoogle Scholar
  35. 35.
    Auchterlonie GJ, McKenzie DR, Cockayne DJH (1989) Ultramicroscopy 31:217CrossRefGoogle Scholar
  36. 36.
    Schneider R, Woltersdorf J, Roder A (1995) Fresenius J Anal Chem 353:263CrossRefGoogle Scholar
  37. 37.
    Imhoff D, Mozdzierz N, Backhaus-Ricoult M (1995) Microsc Microanal Microstruct 6:205CrossRefGoogle Scholar
  38. 38.
    Egerton RF (1971) Electron energy loss spectroscopy. Oxford University Press, New YorkGoogle Scholar
  39. 39.
    Liang XL, Peng LM, Chen Q, Che RC, Xia Y, Xue ZQ, Wu QD (2003) Phys Rev B 68:073403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Quantum Beam Science DirectorateJapan Atomic Energy AgencyTokai-muraJapan

Personalised recommendations