Advertisement

Journal of Materials Science

, Volume 47, Issue 10, pp 4326–4331 | Cite as

Fabrication of multiwalled carbon nanotubes/polypyrrole/Prussian blue ternary composite nanofibers and their application for enzymeless hydrogen peroxide detection

  • E. Jin
  • Xiujie Bian
  • Xiaofeng Lu
  • Ce Wang
Article

Abstract

In this article, Prussian blue (PB) covered multiwalled carbon nanotubes (MWCNTs)/polypyrrole (PPy) ternary composite nanofibers with good dispersibility in water and ethanol have been prepared by directly mixing ferric-(III) chloride and potassium ferricyanide in the presence of MWCNT/PPy coaxial nanofibers under ambient conditions. Transmission electron microscopy shows that the as-synthesized PB nanoparticles covered on the surface of MWCNT/PPy nanofibers. Fourier-transform infrared spectroscopy, UV–Visible spectroscopy, and X-ray diffraction patterns have been used to characterize the obtained MWCNT/PPy/PB ternary composite nanofibers. The MWCNT/PPy/PB ternary composite nanofibers exhibit good electrocatalytic response to detection of H2O2 and provide a new material to modify electrode for amperometric biosensors.

Keywords

Polyaniline Prussian Blue Composite Nanofibers Wide Linear Range H2O2 Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by the research grants from the National 973 Project (S2009061009), the National Natural Science Foundation of China (20904015, 50973038), and Jilin Science and Technology Department project (20100101, 201115014).

References

  1. 1.
    Maehashi K, Katsura T, Kerman K et al (2007) J Phys Chem C 111:3539CrossRefGoogle Scholar
  2. 2.
    Bottini M, Cerignoli F, Dawson MI et al (2006) Biomacromolecules 7:2259CrossRefGoogle Scholar
  3. 3.
    Du D, Huang X, Cai J et al (2007) Anal Bioanal Chem 387:1059CrossRefGoogle Scholar
  4. 4.
    Antiochia R, Gorton L (2007) Biosens Bioelectron 22:2611CrossRefGoogle Scholar
  5. 5.
    Wang J, Liu GD, Lin YH (2006) Analyst 131:477CrossRefGoogle Scholar
  6. 6.
    Tu Y, Lin YH, Yantasee W et al (2005) Electroanalysis 17:79CrossRefGoogle Scholar
  7. 7.
    Liu GD, Lin YH (2006) Anal Chem 78:835CrossRefGoogle Scholar
  8. 8.
    Wang J, Lin YH (2008) Trends Anal Chem 27:619CrossRefGoogle Scholar
  9. 9.
    Baibarac M, Gómez-Romero P (2006) J Nanosci Nanotechnol 6:289Google Scholar
  10. 10.
    An KH, Jeon KK, Heo JK et al (2002) J Electrochem Soc 149:A1058CrossRefGoogle Scholar
  11. 11.
    Hughes M, Chen GZ, Shaffer MSP et al (2002) Chem Mater 14:1610CrossRefGoogle Scholar
  12. 12.
    Xu Y, Jiang Y, Cai H et al (2004) Anal Chim Acta 516:19CrossRefGoogle Scholar
  13. 13.
    Philip B, Xie JN, Chandrasekhar A et al (2004) Smart Mater Str 13:295CrossRefGoogle Scholar
  14. 14.
    Omastová M, Trchová M, Kovářová J et al (2003) Synth Met 138:447CrossRefGoogle Scholar
  15. 15.
    Armes SP (1987) Synth Met 20:365CrossRefGoogle Scholar
  16. 16.
    Beseth PA, Sokol JJ, Shores MP et al (2000) J Am Chem Soc 122:9655CrossRefGoogle Scholar
  17. 17.
    Pan KC, Chuang CS, Cheng SH et al (2001) J Electroanal Chem 501:160CrossRefGoogle Scholar
  18. 18.
    Jayalakshimi M, Scholz F (2000) J Power Sourc 87:212CrossRefGoogle Scholar
  19. 19.
    Somani PR, Radhakrishnan S (2003) Mater Chem Phys 77:117CrossRefGoogle Scholar
  20. 20.
    Moscone D, D’Ottavi D, Compagnone D et al (2001) Anal Chem 73:2529CrossRefGoogle Scholar
  21. 21.
    Karyakin AA, Puganova EA, Budashov IA et al (2004) Anal Chem 76:474CrossRefGoogle Scholar
  22. 22.
    Ricci F, Palleschi G (2005) Biosens Bioelectron 21:389CrossRefGoogle Scholar
  23. 23.
    Zou YJ, Sun LX, Xu F (2007) Talanta 72:437CrossRefGoogle Scholar
  24. 24.
    Zhai JF, Zhai YM, Wen D et al (2009) Electroanalysis 21:2207CrossRefGoogle Scholar
  25. 25.
    Jin E, Lu XF, Cui LL et al (2010) Electrochim Acta 55:7230CrossRefGoogle Scholar
  26. 26.
    Miao YQ, Liu JW (2009) Sci Technol Adv Mater 10:025001CrossRefGoogle Scholar
  27. 27.
    Wu TM, Lin SH (2006) J Polym Sci Part B Polym Phys 44:1413CrossRefGoogle Scholar
  28. 28.
    Reguera E, Fernández-Bertán J, Balmaseda J (1999) Trans Metal Chem 24:648CrossRefGoogle Scholar
  29. 29.
    Zhang W, Wang LL, Zhang N et al (2009) Electroanalysis 21:2325CrossRefGoogle Scholar
  30. 30.
    Wu XL, Cao MH, Hu CW et al (2006) Cryst Growth Des 6:26CrossRefGoogle Scholar
  31. 31.
    Debiemme-Chouvy C (2010) Biosens Bioelectron 25:2454CrossRefGoogle Scholar
  32. 32.
    Chen J, Zhao L, Bai H, Shi GQ (2011) J Electroanal Chem 657:34CrossRefGoogle Scholar
  33. 33.
    Cipriano TC, Takahashi PM, de Lima D et al (2010) J Mater Sci 45:5101. doi: 10.1007/s10853-010-4478-4 CrossRefGoogle Scholar
  34. 34.
    Lu WB, Chang GH, Luo YL et al (2011) J Mater Sci 46:5260. doi: 10.1007/s10853-011-5464-1 CrossRefGoogle Scholar
  35. 35.
    Zhang L, Song ZN, Zhang Q et al (2009) Electroanalysis 21:1835CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Alan G. MacDiarmid InstituteJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations