Journal of Materials Science

, Volume 47, Issue 10, pp 4290–4298 | Cite as

Precipitation of iron-rich intermetallic phases in Al-4.6Cu-0.5Fe-0.5Mn cast alloy

  • K. Liu
  • X. Cao
  • X.-G. Chen


The solidification of Al-4.6Cu-0.5Fe-0.5Mn (206 type) cast alloy has been studied using Thermal Analysis, Differential Scanning Calorimeter, Scanning Electron Microscopy, Electron Back-Scattered Diffraction (EBSD), and Transmission Electron Microscopy (TEM). It is interesting to note that an iron-rich intermetallic phase, Al3(FeMn), is experimentally observed to be dominantly present in the fully solidified cast structure of the experimental 206 cast alloy, in addition to β-Fe (Al7Cu2(FeMn)/Al7Cu2Fe) phase. Al3(FeMn) phase is formed through a eutectic reaction approximately at 640 °C during solidification, possibly resulting from the phase selection and segregation of Fe in liquid Al. The presence of the Al3(FeMn) phase has been confirmed by both EBSD and TEM. It is also found that both β-Fe and Al6(FeMn) are possible to nucleate on Al3(FeMn), as confirmed by the calculated low planar disregistries. The possible solidification reactions have been established for 206-type cast alloy at 0.5%Fe.


Energy Dispersion Spectroscopy Cast Alloy Experimental Alloy Chinese Script Energy Dispersion Spectroscopy Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Alcan, through the NSERC Industry Research Chair in Metallurgy of Aluminum Transformation at the University of Québec at Chicoutimi.


  1. 1.
    Zolotorevsky VS, Belov NA, Glazoff MV (2007) Casting aluminum alloys. Elsevier Science, OxfordGoogle Scholar
  2. 2.
    Bäckerud L (1986) Solidification characteristics of aluminum alloys. American Foundrymen’s Society, Des PlainsGoogle Scholar
  3. 3.
    Couture A (1981) Int. Cast Met. J. 6:9Google Scholar
  4. 4.
    Talamantessilva M, Rodriguez A, Talamantessilva J, Valtierra S, Colas R (2008) Mater Charact 59:1434. doi: 10.1016/j.matchar.2008.01.005 CrossRefGoogle Scholar
  5. 5.
    Tseng CJ, Lee SL, Wu TF, Lin JC (2000) Mater. Trans. JIM 41:708Google Scholar
  6. 6.
    Kamga HK, Larouche D, Bournane M, Rahem A (2010) Metall Mater. Trans. A 41:2844. doi: 10.1007/s11661-010-0293-4 CrossRefGoogle Scholar
  7. 7.
    Liu K, Cao X, Chen XG (2011) Metall. Mater. Trans. A 42:2004. doi: 10.1007/s11661-010-0578-7 CrossRefGoogle Scholar
  8. 8.
    Mondolfo LF (1976) Aluminum alloys: structure and properties. Butterworths, LondonGoogle Scholar
  9. 9.
    Liu K, Cao X, Chen XG (2012) Metall. Mater. Trans. A. doi: 10.1007/s11661-011-1004-5
  10. 10.
    Tseng CJ, Lee SL, Tsai SC, Cheng CJ (2002) J. Mater. Res. 17:2243CrossRefGoogle Scholar
  11. 11.
    Sreeja Kumari SS, Pillai RM, Rajan TPD, Pai BC (2007) Mater. Sci. Eng. A 460–461:561. doi: 10.1016/j.msea.2007.01.082 Google Scholar
  12. 12.
    Hwang JY, Doty HW, Kaufman MJ (2008) Mater. Sci. Eng. A 488:496. doi: 10.1016/j.msea.2007.12.026 Google Scholar
  13. 13.
    Belmares-Perales S, Castro-Román M, Herrera-Trejo M, Ramirez-Vidaurri LE (2008) Met. Mater. Int 14:307. doi: 10.3365/met.mat.2008.06.307 CrossRefGoogle Scholar
  14. 14.
    Seifeddine S, Johansson S, Svensson IL (2008) Mater. Sci. Eng. A 490:385. doi: 10.1016/j.msea.2008.01.056 Google Scholar
  15. 15.
    Cao X, Saunders N, Campbell J (2004) J Mater Sci 39:2303. doi: 10.1023/B:JMSC.0000019991.70334.5f CrossRefGoogle Scholar
  16. 16.
    Liu K, Cao X, Chen XG (2010) In: Gallienne D, Bilodeau M (eds) Light metal: advances in materials and processes, COM 2010, MetSoc, pp 113–120Google Scholar
  17. 17.
    Chen CL, Thomson RC (2010) J. Alloys Compd. 490:293. doi: 10.1016/j.jallcom.2009.09.181 CrossRefGoogle Scholar
  18. 18.
    Li Y (2004) Acta Mater 52:2673. doi: 10.1016/j.actamat.2004.02.015 CrossRefGoogle Scholar
  19. 19.
    Kral M (2004) Scripta Mater 51:215. doi: 10.1016/j.scriptamat.2004.04.015 CrossRefGoogle Scholar
  20. 20.
    Allen CM, O’Reilly KAQ, Cantor B, Evans PV (1998) Prog Mater Sci 43:89CrossRefGoogle Scholar
  21. 21.
    Belov NA, Aksenov AA, Eskin DG (2002) Iron in aluminum alloys: impurity and alloying element. Taylor and Francis, LondonGoogle Scholar
  22. 22.
    Sahoo K, Das S, Murty B (2003) Mater. Sci. Eng. A 355:193. doi: 10.1016/s0921-5093(03)00064-9 Google Scholar
  23. 23.
    Kim DH, Cantor B (1994) J Mater Sci 29:2884. doi: 10.1007/bf01117597 CrossRefGoogle Scholar
  24. 24.
    Skjerpe P (1987) Mater. Trans. A 18A:189Google Scholar
  25. 25.
    Li Y (2004) Acta Mater 52:2945. doi: 10.1016/j.actamat.2004.02.041 CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Liu Y, Han Y, Wei C, Gao Z (2009) J. Alloys Compd. 473:442. doi: 10.1016/j.jallcom.2008.06.004 CrossRefGoogle Scholar
  27. 27.
    Chen XG (1998) In: Welch BJ (ed) Light Metals, TMS, San Antonio, p 1071–1076Google Scholar
  28. 28.
    Griger Á, Stefániay V (1996) J Mater Sci 31:6645. doi: 10.1007/BF00356274 CrossRefGoogle Scholar
  29. 29.
    Wang Y, Jones H, Evans PV (1998) J Mater Sci 33:5205. doi: 10.1023/A:1004483904519 CrossRefGoogle Scholar
  30. 30.
    Li L, Zhang Y, Esling C et al (2010) J Appl Crystallogr 43:1108. doi: 10.1107/s0021889810029493 CrossRefGoogle Scholar
  31. 31.
    Skjerpe P (1987) J Microsc 148:33CrossRefGoogle Scholar
  32. 32.
    Aliravci CA, Pekguleryuz MO (1998) Calphad 22:147CrossRefGoogle Scholar
  33. 33.
    Shabestari SG, Moemeni H (2004) J. Mater. Process. Technol. 153–154:193. doi: 10.1016/j.jmatprotec.2004.04.302 CrossRefGoogle Scholar
  34. 34.
    Hernandez FCR, Djurdjevic MB, Kierkus WT, Sokolowski JH (2005) Mater. Sci. Eng. A 396:271. doi: 10.1016/j.msea.2005.01.024 Google Scholar
  35. 35.
    Cho J, Yan X, Loper CR (2003) AFS Trans. 111, paper 03–124Google Scholar
  36. 36.
    Herlach DM (2004) Solidification and crystallization. Wiley, WeinheimCrossRefGoogle Scholar
  37. 37.
    Zhai XJ, Fu Y, Zhang XM, Sun ZQ, Fan LZ (2000) Light Metals 12:37Google Scholar
  38. 38.
    Javitz AE (1972) Materials science and technology for design engineers. Hayden Book Co., New YorkGoogle Scholar
  39. 39.
    Maggs SJ, Cochrane RF, Flood SC, Evans PV (1995) In: Evens J (ed) Light Metals, TMS, Las Vegas, p 1039–1047Google Scholar
  40. 40.
    Granger DA (1998) In: Welch BJ (ed) Light Metals, TMS, San Antonio, p 941–952Google Scholar
  41. 41.
    Campbell J (1991) Castings. Butterworth-Heinemann, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.University of Québec at ChicoutimiChicoutimiCanada
  2. 2.Aerospace Manufacturing Technology CenterInstitute for Aerospace Research, National Research Council CanadaMontrealCanada
  3. 3.Department of Applied ScienceUniversity of Québec at ChicoutimiChicoutimiCanada

Personalised recommendations