Journal of Materials Science

, Volume 47, Issue 10, pp 4270–4281 | Cite as

Master curve of filler localization in rubber blends at an equilibrium state

  • H. H. Le
  • K. Osswald
  • S. Ilisch
  • X. T. Hoang
  • G. Heinrich
  • H.-J. Radusch


In this study, the phase-specific localization of filler in NBR/NR blends was characterized by means of the selective extraction method and wetting concept. A strong dependence of silica localization on the filler loading was found. A model based on thermodynamic data was proposed for a quantitative prediction of filler localization in rubber blends. The filler localization can be described by a master curve demonstrating a characteristic behavior in dependence on the filler surface tension data of blend components and filler. The effect of filler loading on the silica localization is sufficiently explained by this model by taking into consideration the deactivation of the silanol groups on the silica surface by adsorbed curing additives. Using the master curve, the surface tension of filler affected by curing additives and silane addition can be estimated that may be useful for evaluation and comparison of the effect of different coupling agents. Surface tension values of different fillers were estimated by means of the master curve and they lie in the same order compared to those reported in literature. A potential transfer of filler within a rubber blend can be also quantitatively predicted.


Surface Tension Carbon Black Natural Rubber Layered Double Hydroxide Master Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the German Research Foundation (DFG) for the financial support of this study and Prof. W. Focke (University of Pretoria, South Africa) for TEM images.


  1. 1.
    Mark JE, Erman B, Eirich FR (2005) Science and technology of rubber, 3rd edn. Elesevier Academic Press, LondonGoogle Scholar
  2. 2.
    Wolff S (1996) Rubber Chem Technol 69:325CrossRefGoogle Scholar
  3. 3.
    Morton M (1999) Rubber technology, 3rd edn. Kluwer Academic Publishers, BostonGoogle Scholar
  4. 4.
    Dick JS (2009) Rubber technology: compounding and testing for performance, 2nd edn. Hanser Publications, MunichGoogle Scholar
  5. 5.
    Hess WM, Chirico VE (1977) Rubber Chem Technol 50:301CrossRefGoogle Scholar
  6. 6.
    Hess WM, Scott CE, Callan JE (1967) Rubber Chem Technol 40:814CrossRefGoogle Scholar
  7. 7.
    Sirca AK, Lamond TG (1973) Rubber Chem Technol 46:178CrossRefGoogle Scholar
  8. 8.
    Sircar AK, Lamond TG, Pinter PE (1974) Rubber Chem Technol 47:48CrossRefGoogle Scholar
  9. 9.
    Soares BG, Gubbels F, Jerome R (1997) Rubber Chem Technol 70:60CrossRefGoogle Scholar
  10. 10.
    Soares BG, Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Chem Mater 10:1227CrossRefGoogle Scholar
  11. 11.
    Gubbels F, Jerome R, Teyssib Ph, Vanlathem E, Deltour R, Calderone A, Parentb V, Bredas JL (1994) Macromolecules 27:1972CrossRefGoogle Scholar
  12. 12.
    Sirisinha Ch, Prayoonchatphan N (2001) J Appl Polym Sci 81:3198CrossRefGoogle Scholar
  13. 13.
    Hu W, Ellul MD, Tsou AH, Datta S (2007) Rubber Chem Technol 80:1CrossRefGoogle Scholar
  14. 14.
    Massie JM, Hirst RC, Halasa AF (1993) Rubber Chem Technol 66:276CrossRefGoogle Scholar
  15. 15.
    Callan JE, Hess WM, Scott CE (1971) Rubber Chem Technol 44:814CrossRefGoogle Scholar
  16. 16.
    Walters MH, Keyte DN (1965) Rubber Chem Technol 38:62CrossRefGoogle Scholar
  17. 17.
    Lee B (1984) In: Han CD (ed) Polymerblends and composites in multiphase systems, vol 206. Advances in Chemistry Series, Washington, p 185Google Scholar
  18. 18.
    Jeon IH, Kim H, Kim SG (2003) Rubber Chem Technol 76:1CrossRefGoogle Scholar
  19. 19.
    Herrmann V, Unseld K, Fuchs HB (2001) Kautsch Gummi Kunstst 54:453Google Scholar
  20. 20.
    Tsou AH, Waddell WH (2002) Kautsch Gummi Kunstst 55:382Google Scholar
  21. 21.
    Wang CC, Donnet JB, Wang TK (2005) Rubber Chem Technol 78:17CrossRefGoogle Scholar
  22. 22.
    Maiti S, De SK, Bhowmick AK (1992) Rubber Chem Technol 65:293CrossRefGoogle Scholar
  23. 23.
    Cotton GR, Murphy LJ (1988) Kautsch Gummi Kunstst 41:54Google Scholar
  24. 24.
    Woolard CD, McFadzean BJ (2000) Proceedings of the 28th annual conference on thermal analysis and application, OrlandoGoogle Scholar
  25. 25.
    Klüppel M, Schuster RH, Schaper J (1998) Gummi Fasern Kunstst 51:508Google Scholar
  26. 26.
    Klüppel M, Schuster RH, Schaper J (1999) Rubber Chem Technol 72:91CrossRefGoogle Scholar
  27. 27.
    Phewphong P, Saeoui P, Sirisinha Ch (2008) Polym Test 27:873CrossRefGoogle Scholar
  28. 28.
    Bandyopadhyay A, Thakur V, Pradhan S, Bhowmick AK (2010) J Appl Polym Sci 115:1237CrossRefGoogle Scholar
  29. 29.
    Wootthikanokkhan J, Rattanathamwat N (2006) J Appl Polym Sci 102:248CrossRefGoogle Scholar
  30. 30.
    Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Polym Bull 25:265CrossRefGoogle Scholar
  31. 31.
    Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Colloid Polym Sci 270:134CrossRefGoogle Scholar
  32. 32.
    Lim SK, Hong EP, Song YH, Choi HJ (2010) Chin Macromol Mater Eng 295:329CrossRefGoogle Scholar
  33. 33.
    Shojaei A, Faghihi M (2010) Polym Adv Technol 21:356Google Scholar
  34. 34.
    Elias L, Fenouillot F, Majeste JC, Martin G, Cassagnau P (2008) J Polym Sci Part B 46:1976CrossRefGoogle Scholar
  35. 35.
    Fenouillot F, Cassagnau P, Majeste JC (2009) Polymer 50:1333CrossRefGoogle Scholar
  36. 36.
    Sun Y, Jia MY, Guo ZX, Yu J, Nagai S (2011) J Appl Polym Sci 120:3224CrossRefGoogle Scholar
  37. 37.
    Sun Y, Guo ZX, Yu J (2010) Macromol Mater Eng 295:263CrossRefGoogle Scholar
  38. 38.
    Göldel A, Marmur A, Kasaliwal G, Pötschke P, Heinrich G (2011) Macromolecules 44:6094CrossRefGoogle Scholar
  39. 39.
    Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Lin B (2011) Macromol Chem Phys 212:613CrossRefGoogle Scholar
  40. 40.
    Ziegler J, Schuster RH (2003) Kautsch Gummi Kunstst 56:159Google Scholar
  41. 41.
    Le HH, Qamer Z, Ilisch S, Radusch H-J (2006) Rubber Chem Technol 79:621CrossRefGoogle Scholar
  42. 42.
    Ali Z, Le HH, Ilisch S, Thurn-Albrecht T, Radusch H-J (2010) Polymer 51:4580CrossRefGoogle Scholar
  43. 43.
    Le HH, Ilisch S, Kasaliwal GR, Radusch H-J (2007) Kautsch Gummi Kunstst 60:241Google Scholar
  44. 44.
    Le HH, Ilisch S, Radusch H-J (2008) Rubber Chem Technol 81:767CrossRefGoogle Scholar
  45. 45.
    Le HH, Ilisch S, Heidenreich D, Wutzler A, Radusch H-J (2010) Polym Compos 31:1701CrossRefGoogle Scholar
  46. 46.
    Le HH, Heidenreich D, Ilisch S, Osswald K, Radusch H-J (2011) Rubber Chem Technol 84:41CrossRefGoogle Scholar
  47. 47.
    Hildebrand JH, Scott RL (1964) The solubility of nonelecrolytes. Dover Publications, New YorkGoogle Scholar
  48. 48.
    Scatchard G (1931) Chem Rev 8:321CrossRefGoogle Scholar
  49. 49.
    Scatchard G (1949) Chem Rev 44:7CrossRefGoogle Scholar
  50. 50.
    Paul DR, Newman S (1978) Polymer blends. Academic Press, New YorkGoogle Scholar
  51. 51.
    Girifalco LA, Good RJ (1957) J Phys Chem 61:904CrossRefGoogle Scholar
  52. 52.
    Stoeckelhuber KW, Das A, Jurk R, Heinrich G (2010) Polymer 51:1954CrossRefGoogle Scholar
  53. 53.
    Jönsson U, Malmqvist M, Ronberg I (1985) Biochem J 227:363Google Scholar
  54. 54.
    Kralevich ML, Koening JL (1998) Rubber Chem Technol 71:300CrossRefGoogle Scholar
  55. 55.
    Ono S, Ito M, Tokumitsu H, Seki K (1999) J Appl Polym Sci 74:2529CrossRefGoogle Scholar
  56. 56.
    Ono S, Kiuchi Y, Sawanobori J, Ito M (1999) Polym Int 48:1035CrossRefGoogle Scholar
  57. 57.
    Wang MJ, Wolff S, Donnet JB (1991) Rubber Chem Technol 64:714CrossRefGoogle Scholar
  58. 58.
    Wang MJ, Wolff S (1992) Rubber Chem Technol 65:715CrossRefGoogle Scholar
  59. 59.
    Zhang Q, Yang H, Fu Q (2001) Polymer 45:1913CrossRefGoogle Scholar
  60. 60.
    Yang H, Zhang X, Qu C, Li B, Zhang L, Zhang Q, Fu Q (2007) Polymer 48:860CrossRefGoogle Scholar
  61. 61.
    Pena JM, Allen NS, Edge M, Liauw CM, Noiset O, Valange B (2001) J Mater Sci 36:4419. doi: 10.1023/A:1017922501039 CrossRefGoogle Scholar
  62. 62.
    Ahn SH, Kim SH, Lee SG (2004) J Appl Polym Sci 94:812CrossRefGoogle Scholar
  63. 63.
    Deshmukh GS, Pathak SU, Peshwe DR, Ekhe JD (2010) Bull Mater Sci 33:277CrossRefGoogle Scholar
  64. 64.
    Maged AO, Ayman A, Ulrich WS (2004) Polymer 45:1177CrossRefGoogle Scholar
  65. 65.
    Erika F, Bela P (1997) J Colloid Interface Sci 194:269CrossRefGoogle Scholar
  66. 66.
    Huang H, Tian M, Yang J, Li H, Liang W, Zhang L, Li X (2008) J Appl Polym Sci 107:3325CrossRefGoogle Scholar
  67. 67.
    Kosmalska A, Zaborski M, Slusarski L (2003) Macromol Symp 194:269CrossRefGoogle Scholar
  68. 68.
    Laning SH, Wagner MP, Sellers JW (1959) J Appl Polym Sci 2:225CrossRefGoogle Scholar
  69. 69.
    Reuvekamp LAEM, Debnath SC, Ten Brinke JW, Van Swaaij PJ, Noordermeer JWM (2009) Rubber Chem Technol 76:34Google Scholar
  70. 70.
    Castellano M, Conzatti L, Turturro A, Costa G, Busca G (2007) J Phys Chem B 111:4495CrossRefGoogle Scholar
  71. 71.
    Vidal A, Papirer E, Wang MJ, Donnet JB (1987) Chromatographia 23:121CrossRefGoogle Scholar
  72. 72.
    Wu S (1969) J Colloid Interface Sci 31:153CrossRefGoogle Scholar
  73. 73.
    Tamai Y (1976) Prog Colloid Polym Sci 61:93CrossRefGoogle Scholar
  74. 74.
    Park SJ, Jin SY, Kaang S (2005) Mater Sci Eng A 398:137CrossRefGoogle Scholar
  75. 75.
    Khayet M, Villaluenga JPG, Valentin JL, Lopez-Manchado MA, Mengual JI, Seoane B (2005) Polymer 46:9881CrossRefGoogle Scholar
  76. 76.
    Milmana N, Yoonb JK, Hickeya AJ, Burgess DJ (1993) Colloids Surf B Biointerfaces 1:315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • H. H. Le
    • 1
  • K. Osswald
    • 2
  • S. Ilisch
    • 3
  • X. T. Hoang
    • 4
  • G. Heinrich
    • 5
    • 6
  • H.-J. Radusch
    • 1
  1. 1.Center of Engineering SciencesMartin Luther University Halle-WittenbergHalle (Saale)Germany
  2. 2.University of Applied SciencesMerseburgGermany
  3. 3.Styron Deutschland GmbHSchkopauGermany
  4. 4.University of Technology, National University HCMHo Chi Minh CityVietnam
  5. 5.Leibniz Institute of Polymer Research (IPF) DresdenDresdenGermany
  6. 6.Institute of Material SciencesTechnical University DresdenDresdenGermany

Personalised recommendations