Journal of Materials Science

, Volume 47, Issue 9, pp 4159–4166 | Cite as

Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkylsilane

  • Jiangmei Yan
  • Juan Yu
  • Wenjun Zhang
  • Yanan Li
  • Xiaoyun Yang
  • Aimei Li
  • Xikun Yang
  • Wei Wang
  • Jiaqiang Wang


Hypocrellins, photoactive compounds isolated from fungus, were first employed as non-surfactant templates in the synthesis of ternary chalcogenide Cu3BiS3 and AgBiS2 crystallites via a facile ethanol-thermal process. It was also found that the used templates, poly (vinylpyrrolidone) (PVP), poly (ethylene glycol) (PEG), and hypocrellins had strong effect on the morphology of synthesized Cu3BiS3 and AgBiS2 and their catalytic polymerization products of an alkylsilane, C18H37SiH3 with water. In particular, the orthorhombic phase of wittichenite Cu3BiS3 with multi-armed microrods morphology and the cubic Schapbachite and hexagonal phase Matildite AgBiS2 with flower-like morphology were obtained when hypocrellins were used as templates at 180 °C for 20 h. Although, the used templates seem to have little effect on the crystalline grain size, compared with traditional PVP and PEG templates, hypocrellins have exhibited better directing actions. Furthermore, the polymerization products over Cu3BiS3 and AgBiS2 templated by hypocrellins showed good replica of the morphologies before polymerization while the polymerization products over Cu3BiS3 and AgBiS2 templated by PVP and/or PEG exhibited significant morphology change.


Polymerization Product Bi2S3 Butanone Significant Morphology Change Favorable Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Natural Science Foundation of China (Project 20863009, NSFC-YN U1033603), Yunnan Province (Project 20008CD065), Specialized Research Fund for the Doctoral Program of Higher Education (200806730005) and Program for Innovative Research Team (in Science and Technology) in Universities of Yunnan Province (IRTSTYN) for financial support.

Supplementary material

10853_2012_6270_MOESM1_ESM.doc (184 kb)
Supplementary material 1 (DOC 184 kb)


  1. 1.
    Schmidt JA, Sagua AE, Prat MR (1999) Mater Chem Phys 61:153CrossRefGoogle Scholar
  2. 2.
    Estrella V, Nair MTS, Nair PK (2003) Semicond Sci Technol 18:190CrossRefGoogle Scholar
  3. 3.
    Nair PK, Huang L, Nair MTS, Hu H, Meyers EA, Zingaro RA (1997) J Mater Res 12:651CrossRefGoogle Scholar
  4. 4.
    Mesa F, Dussan A, Gordillo G (2009) Phys B 404:5227CrossRefGoogle Scholar
  5. 5.
    Shen G, Chen D, Tang K, Qian Y (2003) J Cryst Growth 257:293CrossRefGoogle Scholar
  6. 6.
    Chen D, Shen G, Tang K, Liu X, Qian Y, Zhou G (2003) J Cryst Growth 253:512CrossRefGoogle Scholar
  7. 7.
    Aup-Ngoen K, Thongtem S, Thongtem T (2011) Mater Lett 65:442CrossRefGoogle Scholar
  8. 8.
    Shen G, Chen D, Tang K, Qian Y (2003) J Cryst Growth 252:199CrossRefGoogle Scholar
  9. 9.
    Xie B, Yuan S, Jiang Y, Lu J, Li Q, Wu Y, Yu W, Zhang H, Qian Y (2002) Chem Lett 31:612CrossRefGoogle Scholar
  10. 10.
    Thongtem T, Tipcompor N, Thongtem S (2010) Mater Lett 64:755CrossRefGoogle Scholar
  11. 11.
    Wang J, Yang X, Hu W, Li B, Yan J, Hu J (2007) Chem Commun 46:4931CrossRefGoogle Scholar
  12. 12.
    Gou X, Cheng F, Shi Y, Zhang L, Peng S, Chen J, Shen P (2006) J Am Chem Soc 128:7222CrossRefGoogle Scholar
  13. 13.
    Zhou X, Chen S, Zhang D, Guo X, Ding W, Chen Y (2006) Langmui 22:1383CrossRefGoogle Scholar
  14. 14.
    Chowdhury PK, Das K, Datta A, Liu W, Zhang H, Petrich JW (2002) J Photochem Photobiol A 154:106CrossRefGoogle Scholar
  15. 15.
    Fang L, Qing C, Shao H, Yang Y, Dong Z, Wang F, Zhao W, Yang W, Liu J (2006) J Antibiot 59:351CrossRefGoogle Scholar
  16. 16.
    Chen D, Wang D, Kong D, Zhang X (2005) J Photochem Photobiol A 170:37CrossRefGoogle Scholar
  17. 17.
    Vinod MP, Bahnemann D, Rajamohanan PR, Vijayamohanan K (2003) J Phys Chem B 107:11583CrossRefGoogle Scholar
  18. 18.
    Losada J, Armada MPG, Cuadrado I, Alonso B, Gonzalez B, Casado CM, Zhang J (2004) J Organomet Chem 689:2799CrossRefGoogle Scholar
  19. 19.
    Prasad BLV, Savka SI, Sorensen CM, Zaikovski V, Klabunde KJ (2003) J Am Chem Soc 125:10488CrossRefGoogle Scholar
  20. 20.
    Wei Q, Li B, Li C, Wang JQ, Wang W, Yang XK (2006) J Mater Chem 16:3606CrossRefGoogle Scholar
  21. 21.
    Burton AW, Ong K, Rea T, Chan IY (2009) Micropor Mesopor Mater 117:75CrossRefGoogle Scholar
  22. 22.
    Zhou J, Liu J, Xia S, Wang X, Zhang B (2005) J Phys Chem B 109:19529CrossRefGoogle Scholar
  23. 23.
    Zhou J, Xia S, Chen J, Wang X, Zhang B (2003) Chem Commun 12:1372CrossRefGoogle Scholar
  24. 24.
    Chen D, Shen L (2005) J Photochem Photobiol A 171:275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jiangmei Yan
    • 1
    • 2
  • Juan Yu
    • 1
  • Wenjun Zhang
    • 1
  • Yanan Li
    • 1
  • Xiaoyun Yang
    • 1
  • Aimei Li
    • 1
  • Xikun Yang
    • 3
  • Wei Wang
    • 1
  • Jiaqiang Wang
    • 1
  1. 1.Department of Applied ChemistryKey Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, Yunnan UniversityKunmingPeople’s Republic of China
  2. 2.Northwest Institute for Nonferrous Metal ResearchXi’anPeople’s Republic of China
  3. 3.Research Center for Analysis and MeasurementKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations