Journal of Materials Science

, Volume 47, Issue 9, pp 4101–4109 | Cite as

Effects of Ag addition on the microstructure and thermal stability of 6156 alloy

  • Haifeng Zhang
  • Ziqiao Zheng
  • Yi Lin
  • Xianfu Luo
  • Jing Zhong


The effects of Ag addition on the microstructure and thermal stability of 6156 Al–Mg–Si–Cu alloy were investigated by means of hardness measurement, tensile tests, differential scanning calorimetry, and transmission electron microscopy. The results showed that addition of small amount of Ag to 6156 alloy did not change the precipitation sequence mainly β″ and Q′ strengthening phase but slightly accelerated the age-hardening rate and increased peak hardness at the same aging condition. The tensile properties enhanced about 30 MPa at the room temperature or thermal exposure at lower temperature (<100 °C). With the exposed temperature and time increased to 150 °C for 1000 h, almost no difference between the Ag-containing and Ag-free alloys. When exposed at 200 °C, the tensile strength of Ag-containing alloy became lower than that of Ag-free alloy because of the coarsening precipitations in matrix and boundary observed by TEM observed. For both alloys, thermal exposure at temperatures 100 °C for long time periods had no significant effect on tensile properties. Loss in strength was small and large with prolonging the exposure time at 150 and 200 °C, respectively.


Thermal Exposure Peak Hardness Differential Scanning Calorimetry Trace Exposed Sample Balance Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fortin PE, Bull MJ, Moore DM (1983). In: SAE International Congress & Exposition, Detroit, MI, SAE Paper No. 830096Google Scholar
  2. 2.
    Starke EA Jr, Csontos AA (1998). In: Proceedings of 6th international conference on aluminum alloys. p 2077Google Scholar
  3. 3.
    Dif R, Bechet D, Wamer T, Ribes H (1998). In: Proceedings of 6th international conference on aluminum alloys, vol 3. p 1991Google Scholar
  4. 4.
    Dif R, Bes B, Wamer T, Lequeu P, Ribes H, Lassince P (2001) Advances in the metallurgy of aluminum alloys. ASM International, Materials Park, p 390Google Scholar
  5. 5.
    Schmidt HJ, Schmidt-Brandecker B, Ohrloff N, Fleischer T (1999) In: Proceedings of 20th symposium international committee on aeronautical fatigue I. p 537Google Scholar
  6. 6.
    Hinrichsen J (2001) In: Peters M, Kaysser WA (eds) Advanced aerospace materials. Deutsche Gesellschaft für Luft-und Raumfahrt, Bonn, Germany, p 3Google Scholar
  7. 7.
    Li Q, Shenoy RN (1997) J Mater Sci 32:3401. doi: 10.1023/A:1018664515422 CrossRefGoogle Scholar
  8. 8.
    Liu XY, Pan QL, Lu ZL, Cao SF, He YB, Li WB (2011) Adv Mater Res 152–153:1426Google Scholar
  9. 9.
    Chang CH, Lee SL, Lin JC, Yeh MS, Jeng RR (2005) Mater Chem Phys 91:454CrossRefGoogle Scholar
  10. 10.
    Reich L, Murayama M, Hono K (1998) Acta Mater 46:6053CrossRefGoogle Scholar
  11. 11.
    Matsuda K, Fukaya K, Zou Y, Kawabata T, Uetani Y, Ikeno S (2004) Mater Forum 28:424Google Scholar
  12. 12.
    Zou Y, Matsuda K, Kawabata T, Himuro Y, Ikeno S (2004) Mater Forum 28:539Google Scholar
  13. 13.
    Furihata A, Matsuda K, Nakamura JY, Ikeno S, Uetina Y (2006) Mater Sci Forum 519–521:507CrossRefGoogle Scholar
  14. 14.
    Nakamura J, Matsuda K, Nakamura Y, Sato T, Ikeno S (2006) Mater Sci Forum 519–521:511CrossRefGoogle Scholar
  15. 15.
    Dutta I, Allen SM (1991) J Mater Sci Lett 10:323CrossRefGoogle Scholar
  16. 16.
    Miao WF, Laughlin DE (2000) Metall Trans A 31A:361CrossRefGoogle Scholar
  17. 17.
    Lloyd DJ, Evans DR, Gupta AK (2000) Can Metall Q 39:475Google Scholar
  18. 18.
    Edwards GA, Stiller K, Dunlop GL, Couper MJ (1998) Acta Mater 46:3893CrossRefGoogle Scholar
  19. 19.
    Gaber A, Ali AM, Matsuda K, Kawabata T, Yamazaki T, Ikeno S (2007) J Alloys Compd 432:149CrossRefGoogle Scholar
  20. 20.
    Matsuda K, Ikeno S, Matsui H, Sato T, Terayama K, Uetani Y (2005) Metall Trans A 36A:2007CrossRefGoogle Scholar
  21. 21.
    Yassar RS, Field DP, Weiland H (2005) Scripta Mater 53:299CrossRefGoogle Scholar
  22. 22.
    Vissers R, Huis MA, Jansen J, Zandbergen HW, Marioara CD, Andersen SJ (2007) Acta Mater 55:3815CrossRefGoogle Scholar
  23. 23.
    Mahadevan S, Giridhar A, Singh AK (1986) J Non-Cryst Solids 88:11CrossRefGoogle Scholar
  24. 24.
    Rysava N, Spasov T, Tichy L (1987) J Therm Anal 32:1015CrossRefGoogle Scholar
  25. 25.
    Gaber A, Matsuda K, Ali AM, Zou Y, Ikeno S (2004) Mater Sci Technol 20:1627CrossRefGoogle Scholar
  26. 26.
    Prabhu N, Howe JM (1992) Metall Trans A 23A:135Google Scholar
  27. 27.
    Callister WD Jr (ed) (1991) In: Materials science and engineering: an introduction, 2nd edn. Wiley, New York, p 536Google Scholar
  28. 28.
    Ohmori Y, Doan LC, Nakai K (2002) Mater Trans 43:246CrossRefGoogle Scholar
  29. 29.
    Jin M, Li J, Shao GJ (2007) J Alloys Compd 437:146CrossRefGoogle Scholar
  30. 30.
    Matsuda K, Teguri D, Uetanic Y, Sato T, Ikeno S (2002) Scripta Mater 47:833CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Haifeng Zhang
    • 1
  • Ziqiao Zheng
    • 1
  • Yi Lin
    • 1
  • Xianfu Luo
    • 1
  • Jing Zhong
    • 1
  1. 1.School of Material Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations