Skip to main content

Advertisement

Log in

Effects of Ag addition on the microstructure and thermal stability of 6156 alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of Ag addition on the microstructure and thermal stability of 6156 Al–Mg–Si–Cu alloy were investigated by means of hardness measurement, tensile tests, differential scanning calorimetry, and transmission electron microscopy. The results showed that addition of small amount of Ag to 6156 alloy did not change the precipitation sequence mainly β″ and Q′ strengthening phase but slightly accelerated the age-hardening rate and increased peak hardness at the same aging condition. The tensile properties enhanced about 30 MPa at the room temperature or thermal exposure at lower temperature (<100 °C). With the exposed temperature and time increased to 150 °C for 1000 h, almost no difference between the Ag-containing and Ag-free alloys. When exposed at 200 °C, the tensile strength of Ag-containing alloy became lower than that of Ag-free alloy because of the coarsening precipitations in matrix and boundary observed by TEM observed. For both alloys, thermal exposure at temperatures 100 °C for long time periods had no significant effect on tensile properties. Loss in strength was small and large with prolonging the exposure time at 150 and 200 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fortin PE, Bull MJ, Moore DM (1983). In: SAE International Congress & Exposition, Detroit, MI, SAE Paper No. 830096

  2. Starke EA Jr, Csontos AA (1998). In: Proceedings of 6th international conference on aluminum alloys. p 2077

  3. Dif R, Bechet D, Wamer T, Ribes H (1998). In: Proceedings of 6th international conference on aluminum alloys, vol 3. p 1991

  4. Dif R, Bes B, Wamer T, Lequeu P, Ribes H, Lassince P (2001) Advances in the metallurgy of aluminum alloys. ASM International, Materials Park, p 390

    Google Scholar 

  5. Schmidt HJ, Schmidt-Brandecker B, Ohrloff N, Fleischer T (1999) In: Proceedings of 20th symposium international committee on aeronautical fatigue I. p 537

  6. Hinrichsen J (2001) In: Peters M, Kaysser WA (eds) Advanced aerospace materials. Deutsche Gesellschaft für Luft-und Raumfahrt, Bonn, Germany, p 3

  7. Li Q, Shenoy RN (1997) J Mater Sci 32:3401. doi:10.1023/A:1018664515422

    Article  CAS  Google Scholar 

  8. Liu XY, Pan QL, Lu ZL, Cao SF, He YB, Li WB (2011) Adv Mater Res 152–153:1426

    Google Scholar 

  9. Chang CH, Lee SL, Lin JC, Yeh MS, Jeng RR (2005) Mater Chem Phys 91:454

    Article  CAS  Google Scholar 

  10. Reich L, Murayama M, Hono K (1998) Acta Mater 46:6053

    Article  CAS  Google Scholar 

  11. Matsuda K, Fukaya K, Zou Y, Kawabata T, Uetani Y, Ikeno S (2004) Mater Forum 28:424

    CAS  Google Scholar 

  12. Zou Y, Matsuda K, Kawabata T, Himuro Y, Ikeno S (2004) Mater Forum 28:539

    CAS  Google Scholar 

  13. Furihata A, Matsuda K, Nakamura JY, Ikeno S, Uetina Y (2006) Mater Sci Forum 519–521:507

    Article  Google Scholar 

  14. Nakamura J, Matsuda K, Nakamura Y, Sato T, Ikeno S (2006) Mater Sci Forum 519–521:511

    Article  Google Scholar 

  15. Dutta I, Allen SM (1991) J Mater Sci Lett 10:323

    Article  CAS  Google Scholar 

  16. Miao WF, Laughlin DE (2000) Metall Trans A 31A:361

    Article  CAS  Google Scholar 

  17. Lloyd DJ, Evans DR, Gupta AK (2000) Can Metall Q 39:475

    CAS  Google Scholar 

  18. Edwards GA, Stiller K, Dunlop GL, Couper MJ (1998) Acta Mater 46:3893

    Article  CAS  Google Scholar 

  19. Gaber A, Ali AM, Matsuda K, Kawabata T, Yamazaki T, Ikeno S (2007) J Alloys Compd 432:149

    Article  CAS  Google Scholar 

  20. Matsuda K, Ikeno S, Matsui H, Sato T, Terayama K, Uetani Y (2005) Metall Trans A 36A:2007

    Article  CAS  Google Scholar 

  21. Yassar RS, Field DP, Weiland H (2005) Scripta Mater 53:299

    Article  CAS  Google Scholar 

  22. Vissers R, Huis MA, Jansen J, Zandbergen HW, Marioara CD, Andersen SJ (2007) Acta Mater 55:3815

    Article  CAS  Google Scholar 

  23. Mahadevan S, Giridhar A, Singh AK (1986) J Non-Cryst Solids 88:11

    Article  CAS  Google Scholar 

  24. Rysava N, Spasov T, Tichy L (1987) J Therm Anal 32:1015

    Article  CAS  Google Scholar 

  25. Gaber A, Matsuda K, Ali AM, Zou Y, Ikeno S (2004) Mater Sci Technol 20:1627

    Article  CAS  Google Scholar 

  26. Prabhu N, Howe JM (1992) Metall Trans A 23A:135

    CAS  Google Scholar 

  27. Callister WD Jr (ed) (1991) In: Materials science and engineering: an introduction, 2nd edn. Wiley, New York, p 536

  28. Ohmori Y, Doan LC, Nakai K (2002) Mater Trans 43:246

    Article  CAS  Google Scholar 

  29. Jin M, Li J, Shao GJ (2007) J Alloys Compd 437:146

    Article  Google Scholar 

  30. Matsuda K, Teguri D, Uetanic Y, Sato T, Ikeno S (2002) Scripta Mater 47:833

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqiao Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zheng, Z., Lin, Y. et al. Effects of Ag addition on the microstructure and thermal stability of 6156 alloy. J Mater Sci 47, 4101–4109 (2012). https://doi.org/10.1007/s10853-012-6264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6264-y

Keywords

Navigation