Journal of Materials Science

, Volume 47, Issue 9, pp 4042–4052 | Cite as

Synthesis of A356 Al–high-Ca fly ash composites by pressure infiltration technique and their characterization

  • Grigorios Itskos
  • Pradeep K. Rohatgi
  • Angeliki Moutsatsou
  • John D. DeFouw
  • Nikolaos Koukouzas
  • Charalampos Vasilatos
  • Benjamin F. Schultz


Eight types of A356 Al–fly ash composites were produced by pressure infiltration of high-Ca lignite fly ash. This type of ash was used for the first time in Al-composites synthesis, and particularly by liquid metal infiltration techniques. After examining mineralogy and chemistry, specific, narrow ash size fractions were used for the synthesis of composites, and properties linked to microstructure and wear strength of the materials. The effect of using ground ash particles on the microstructure and tribological performance of the composites was also investigated. It was concluded that using fine, high-Ca ash particles can improve the properties of composites, and that using ash particles in a ground form can better facilitate the production process of MMCs.


Wear Rate Lignite Tribological Performance Pressure Infiltration Aforementioned Instrument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authorized personnel of CERECO S.A., Greece is acknowledged for performing the tribological testing of composites.


  1. 1.
    Park BG, Crosky AG, Hellier AK (2001) J Mater Sci 36(10):2417. doi: 1023/A:1017921813503 CrossRefGoogle Scholar
  2. 2.
    Karayannis VG, Moutsatsou AK (2006) J Mat Proc Tech 171(2):30CrossRefGoogle Scholar
  3. 3.
    Tsimas S, Moutsatsou-Tsima A (2005) Cement Concrete Comp 27(2):231CrossRefGoogle Scholar
  4. 4.
    Guo RQ, Rohatgi PK, Nath D (1996) J Mater Sci 31(20):5513. doi: 10.1007/BF01159325 CrossRefGoogle Scholar
  5. 5.
    Guo RQ, Rohatgi PK, Nath D (1997) J Mater Sci 32(15):3971. doi: 10.1023/A:1018625118090 CrossRefGoogle Scholar
  6. 6.
    Gikunoo E, Omotoso O, Oguocha INA (2005) J Mater Sci 40(2):487. doi: 10.1007/s10853-005-6110-6 CrossRefGoogle Scholar
  7. 7.
    Rajan TPD, Pillai RM, Pai BC, Satyanarayana KG, Rohatgi PK (2007) Compos Sci Technol 67:3369CrossRefGoogle Scholar
  8. 8.
    Hrairi M, Ahmed M, Nimir Y (2009) Adv Powder Technol 20:548CrossRefGoogle Scholar
  9. 9.
    Zahi S, Daud AR (2011) Mater Des 32(3):1337CrossRefGoogle Scholar
  10. 10.
    Bader MG, Clyne TW, Cappleman GR, Hubert PA (1985) Compos Sci Techol 23(4):287CrossRefGoogle Scholar
  11. 11.
    Cook AJ, Werner PS (1991) Mater Sci Eng A 144(1–2):189Google Scholar
  12. 12.
    Demir A, Altinkok N (2004) Compos Sci Technol 64(13/14):2067CrossRefGoogle Scholar
  13. 13.
    Kouzeli M, San Marchi C, Mortensen A (2002) Mater Sci Eng A 337(1/2):264Google Scholar
  14. 14.
    Rohatgi PK, Guo RQ, Iksan H, Borchelt EJ, Asthana R (1998) Mater Sci Eng A 244:22CrossRefGoogle Scholar
  15. 15.
    Dasgupta R (2010) Tribol Int 43(5–6):951CrossRefGoogle Scholar
  16. 16.
    Yılmaz O, Buytoz S (2001) Compos Sci Technol 61:2381CrossRefGoogle Scholar
  17. 17.
    Ma T, Yamaura H, Koss DA, Voigt RC (2003) Mater Sci Eng A 360(1–2):116Google Scholar
  18. 18.
    Sudarshan, Surappa MK (2008) Wear 265:349CrossRefGoogle Scholar
  19. 19.
    Whitney DL, Evans BW (2010) Am Mineral 95:185CrossRefGoogle Scholar
  20. 20.
    Itskos G, Moutsatsou A, Rohatgi PK, Koukouzas N, Vasilatos C, Katsika E (2011) Coal Combustion Gasification Prod 3:75CrossRefGoogle Scholar
  21. 21.
    Boyd JD, Lloyd JD (2003) In: Comprehensive composite materials, Chap. 3.6. Elsevier, Amsterdam, pp 139–149Google Scholar
  22. 22.
    Weast RC (1990) Handbook of chemistry and physics, 70th edn. CRC Press, Boca Raton, p d-33Google Scholar
  23. 23.
    Samsonov GV (1973) The oxide handbook. IFI/Plenum Data Corporation, New York, p 122CrossRefGoogle Scholar
  24. 24.
    Rohatgi PK, Kim JK, Gupta N, Simon A, Daoud A (2006) Composites A 37:430CrossRefGoogle Scholar
  25. 25.
    Long S, Zhang Z, Flower HM (1994) Acta Metall Mater 424:1389Google Scholar
  26. 26.
    Rohatgi PK, Schultz BF, Daoud A, Zhang WW (2010) Tribol Int 43(1–2):455CrossRefGoogle Scholar
  27. 27.
    Jun Z (2010) Tribol Lett 40:311CrossRefGoogle Scholar
  28. 28.
    Rohatgi PK, Guo RQ (1997) Tribol Lett 3:339CrossRefGoogle Scholar
  29. 29.
    Prasad SV, Asthana R (2004) Tribol Lett 17(3):445CrossRefGoogle Scholar
  30. 30.
    Uyyuru RK, Surappa MK, Brusethaug S (2007) Tribol Int 40(2):365CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Grigorios Itskos
    • 1
    • 3
  • Pradeep K. Rohatgi
    • 2
  • Angeliki Moutsatsou
    • 1
  • John D. DeFouw
    • 2
  • Nikolaos Koukouzas
    • 3
  • Charalampos Vasilatos
    • 4
  • Benjamin F. Schultz
    • 2
  1. 1.Laboratory of Inorganic and Analytical Chemistry, School of Chemical EngineeringNational Technical University of AthensAthensGreece
  2. 2.Materials Department, College of Engineering and Applied ScienceUniversity of WisconsinMilwaukeeUSA
  3. 3.Centre for Research and Technology HellasInstitute for Solid Fuels Technology and ApplicationsAthensGreece
  4. 4.Department of Economic Geology & Geochemistry, Faculty of Geology and GeoenvironmentNational & Kapodistrian University of AthensAthensGreece

Personalised recommendations