Journal of Materials Science

, Volume 47, Issue 9, pp 4019–4027 | Cite as

Control of the structure, morphology and dielectric properties of bismuth titanate ceramics by praseodymium substitution using an intermediate fuel agent-assisted self-combustion synthesis

  • Warapong Krengvirat
  • Srimala Sreekantan
  • M. N. Ahmad-Fauzi
  • Charoen Chinwanitcharoen
  • Go Kawamura
  • Atsunori Matsuda


The volatilization of bismuth (Bi) species and bismuth oxide (Bi2O3) leads to the presence of the oxygen vacancies (V O 00 ) and consequently restrains the properties of bismuth titanate (BIT; Bi4Ti3O12). This report presents the incorporation of different atomic ratios of praseodymium ion (Pr3+: x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) into the BIT (Bi4−x Pr x Ti3O12) ceramics through an intermediate fuel agent-assisted self-combustion synthesis (IFSC). X-ray diffraction and Raman spectroscopy results revealed that some of bismuth ion (Bi3+) in the pseudo-perovskite layer containing Ti–O octahedra was substituted by Pr3+ ion. The substitution by ion with a smaller ionic radius caused the structure distortion and consequently resulted in the phase transformation from an orthorhombic symmetry to a tetragonal symmetry. Besides, it suppressed the volatilization of Bi and Bi2O3 and increased the stability of metal–oxygen octahedra in the BIT. These play a crucial role to control the crystal growth, as well as limit the V O 00 . Dense ceramic with a relative density up to 96.2% was obtained by incorporating Pr3+ with atomic ratio of 1.0. It exhibited high dielectric constant as 908.19 and low dissipation factor as 0.0011. The results address the possibility to control the structure, morphology and dielectric properties of BIT ceramic by incorporating Pr3+ ion through IFSC.


Dielectric Property Vibrational Mode Atomic Ratio Bi2O3 Praseodymium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors like to thank Universiti Sains Malaysia for sponsoring this work under a 2008 short-term grant (6035276) and the ASEAN University Network for Science and Engineering Education (AUN/SEED-net) (6050151).


  1. 1.
    Yueming L, Wen C, Qing X, Jing Z (2007) Ceram Int 33:95CrossRefGoogle Scholar
  2. 2.
    Hyatt NC, Hriljac JA, Comyn TP (2003) Mater Res Bull 38:837CrossRefGoogle Scholar
  3. 3.
    Subbarao EC (1961) Phys Rev 122:804CrossRefGoogle Scholar
  4. 4.
    Hou J, Kumar RV, Qu Y, Krsmanovic D (2009) J Nanopart Res 12:563CrossRefGoogle Scholar
  5. 5.
    Villegas M, Jardiel T, Caballero AC (2009) J Eur Ceram Soc 29:737CrossRefGoogle Scholar
  6. 6.
    Lazarevic ZZ, Romcevic NZ, Bobic JD, Romcevic MJ, Dohcevic-Mitrovic Z, Stojanvic BD (2009) J Alloys Compd 486:848CrossRefGoogle Scholar
  7. 7.
    Lazarevic ZZ, Stojanvic BD, Paiva-Santos CO, Romcevic NZ (2008) Ferroelectric 368:154CrossRefGoogle Scholar
  8. 8.
    Tang Q-Y, Kan Y-M, Li Y-G, Zhang G-J, Wang P-L (2006) Sci Mater 54:2075Google Scholar
  9. 9.
    Simoes AZ, Quinelato C, Ries A, Stojanovic BD, Longo E, Varela JA (2006) Mater Chem Phys 98:481CrossRefGoogle Scholar
  10. 10.
    Takahashi M, Noguchi Y, Miyayama M (2005) J Ceram Process Res 6:281Google Scholar
  11. 11.
    Yoneda Y, Kohara S, Mizuki J (2006) J Appl Phys 45:7556CrossRefGoogle Scholar
  12. 12.
    Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Nature 401:682CrossRefGoogle Scholar
  13. 13.
    Yamada M, Iizawa N, Yamaguchi T, Sakamoto W, Kikuta K, Yogo T, Hayashi T, Hirano S-I (2003) Jpn J Appl Phys 42:5222CrossRefGoogle Scholar
  14. 14.
    Cheng CP, Tang MH, Ye Z, Zhong XL, Zheng XJ, Zhou YC, Hu ZS (2007) Mater Lett 61:3563CrossRefGoogle Scholar
  15. 15.
    Chen Y-C (2006) Thin Solid Films 513:331CrossRefGoogle Scholar
  16. 16.
    Kim JK, Kim J, Song TW, Kim SS (2002) Thin Solid Films 419:225CrossRefGoogle Scholar
  17. 17.
    Goh PY, Razak KA, Sreekantan S (2009) J Alloys Compd 475:758CrossRefGoogle Scholar
  18. 18.
    Krengvirat W, Sreekantan S, Ahmad-Fauzi MN, Matsuda A, Chinwanitcharoen C (2012) J Ceram Soc Jpn 120:1CrossRefGoogle Scholar
  19. 19.
    Achary SN, Patwe SJ, Krishna PSR, Shinde AB, Tyagi AK (2008) J Phys 71:935Google Scholar
  20. 20.
    Kim JS, Lee SY, Lee HJ, Ahn CW, Kim WI, Jang MS (2008) J Electroceram 21:633CrossRefGoogle Scholar
  21. 21.
    Simoes AZ, Stojanovic BD, Ramirez MA, Cavalheiro AA, Longo E, Varela JA (2008) Ceram Int 34:257CrossRefGoogle Scholar
  22. 22.
    Moore JJ, Yi HC (1990) J Mater Sci 25:1159. doi: 10.1007/BF00585421 Google Scholar
  23. 23.
    Du X, Xu Y, Ma H, Wang J, Li X (2007) J Am Ceram Soc 90:1382CrossRefGoogle Scholar
  24. 24.
    Wang X-H, Chen R-Z, Gui Z-L, Li LT (2003) Mater Sci Eng B 99:199CrossRefGoogle Scholar
  25. 25.
    Wang YH, Huang CP, Zhu YY (2006) Solid State Commun 138:229CrossRefGoogle Scholar
  26. 26.
    Du YL, Zhang MS, Chen Q, Yuan ZR, Yin V, Zhang QA (2002) Solid State Commun 124:113CrossRefGoogle Scholar
  27. 27.
    Wang Y, Xu G, Zhang X, Tang W, Cheng G, Zhu Y (2004) Mater Lett 58:813CrossRefGoogle Scholar
  28. 28.
    Oliveira RC, Cavalcante LS, Sczancoski JC, Aguiar EC, Espinosa JWM, Varela JA, Pizani PS, Longo E (2009) J Alloys Compd 478:661CrossRefGoogle Scholar
  29. 29.
    Luo S, Tang Z, Yao W, Zhang Z (2003) Microelectron Eng 66:147CrossRefGoogle Scholar
  30. 30.
    Ng CY, Razak KA (2011) J Alloys Compd 509:942CrossRefGoogle Scholar
  31. 31.
    Razak KA, Cheah JY, Sreekantan S (2011) J Alloys Compd 509:2936CrossRefGoogle Scholar
  32. 32.
    Krengvirat W, Sreekantan S, Ahmad-Fauzi MN, Chinwanitcharoen C, Hiroyuki M, Atsunori M (2011) J Ceram Int. doi: 10.1016/j.ceramint.2011.11.081
  33. 33.
    Hervoches CH, Lightfoot P (1991) Chem Mater 11:3359CrossRefGoogle Scholar
  34. 34.
    Zarycka A, Lisinska-Czekaj A, Czuber J, Orkisz T, Ilczuk J, Czekaj D (2005) Mater Sci-Pol 23:167Google Scholar
  35. 35.
    Graves PR, Hua G, Myhra S, Thompson JG (1995) J Solid State Chem 114:112CrossRefGoogle Scholar
  36. 36.
    Ling ZC, Xia HR, Liu WL, Han H, Wang XQ, Sun SQ, Ran DG, Yu LL (2006) Mater Sci Eng B 128:156CrossRefGoogle Scholar
  37. 37.
    Zhou D, Gu H, Hu Y, Qian Z, Hu Z, Yang K, Zou T, Wang Z, Guan J, Chen W (2010) J Appl Phys 107:094105-1, 094105-3–094105-6Google Scholar
  38. 38.
    Watcharapasorn A, Siriprapa P, Jiansirisomboon S (2009) J Eur Ceram Soc 30:87CrossRefGoogle Scholar
  39. 39.
    Chon U, Shim JS (2003) J Appl Phys 93:4769CrossRefGoogle Scholar
  40. 40.
    Buessem WR, Cross LE, Goswami AK (1996) J Am Ceram Soc 49:33CrossRefGoogle Scholar
  41. 41.
    Arlt G (1989) Ferroelectrics 91:3CrossRefGoogle Scholar
  42. 42.
    Kong LB, Ma J, Zhu W, Tan OK (2001) Mater Lett 51:108CrossRefGoogle Scholar
  43. 43.
    Coondoo I, Jha AK, Agarwal SK (2007) Ceram Int 33:41CrossRefGoogle Scholar
  44. 44.
    Simoes AZ, Pianno RF, Riccardi CS, Cavalcante LS, Longo E, Varela JA (2008) Ceram Int 454:66Google Scholar
  45. 45.
    Takahashi M, Noguchi Y, Miyayama M (2005) Ceram Process Res 6:281Google Scholar
  46. 46.
    Gachigi KW, Kumar U, Dougherty JP (2002) ISAF ‘92, Proc Eighth IEEE Int Symp Appl 492–495Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Warapong Krengvirat
    • 1
    • 3
  • Srimala Sreekantan
    • 1
  • M. N. Ahmad-Fauzi
    • 1
  • Charoen Chinwanitcharoen
    • 2
  • Go Kawamura
    • 3
  • Atsunori Matsuda
    • 3
  1. 1.School of Materials and Mineral Resources Engineering, Engineering CampusUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Faculty of EngineeringBurapha UniversityChonburiThailand
  3. 3.Department of Electrical and Electronic Information EngineeringToyohashi University of TechnologyAichiJapan

Personalised recommendations