Journal of Materials Science

, Volume 47, Issue 9, pp 4012–4018 | Cite as

Suppressing the growth of interfacial Cu–Sn intermetallic compounds in the Sn–3.0Ag–0.5Cu–0.1Ni/Cu–15Zn solder joint during thermal aging



Evolution of interfacial phase formation in Sn–3.0Ag–0.5Cu/Cu (wt%), Sn–3.0Ag–0.5Cu–0.1Ni/Cu, Sn–3.0Ag–0.5Cu/Cu–15Zn, and Sn–3.0Ag–0.5Cu–0.1Ni/Cu–15Zn solder joints are investigated. Doping Ni in the solder joint can suppress the growth of Cu3Sn and alter the morphology of the interfacial intermetallic compounds (IMCs), however it shows rapid growth of (Cu,Ni)6Sn5 at the Sn–3.0Ag–0.5Cu–0.1Ni/Cu interface. In comparison with the Cu substrates, the Cu–Zn substrates effectively suppress the formation of Cu–Sn IMCs. Among these four solder joints, the Sn–3.0Ag–0.5Cu–0.1Ni/Cu–15Zn solder joint exhibits the thinnest IMC, and only (Cu,Ni)6(Sn,Zn)5 formed at the interface after aging. It is revealed that the presence of Ni acts to enhance the effect of Zn on the suppression of Cu–Sn IMCs in the SAC305–0.1Ni/Cu–15Zn solder joint. The limited formation of IMCs is related to the elemental redistribution at the joint interfaces during aging. The Sn–3.0Ag–0.5Cu–0.1Ni/Cu–15Zn joint can act as a stabilized interconnection due to the effective suppression of interfacial reaction.


Solder Joint Thermal Aging Solder Ball Under Bump Metallization Kirkendall Void 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support from the National Science Council, Taiwan, under the Contract No. NSC-97-2221-E-007-021-MY3 is gratefully acknowledged.


  1. 1.
    Abtew M, Selvaduray G (2000) Mater Sci Eng R 27:95–141. doi: 10.1016/S0927-796X(00)00010-3 CrossRefGoogle Scholar
  2. 2.
    Frear DR, Jang JW, Lin JK, Zhang C (2001) JOM 53:28–33. doi: 10.1007/s11837-001-0099-3 CrossRefGoogle Scholar
  3. 3.
    Laurila T, Vuorinen V, Kivilahti JK (2005) Mater Sci Eng R 49:1–60. doi: 10.1016/j.mser.2005.03.001 CrossRefGoogle Scholar
  4. 4.
    Tanida K, Umemoto M, Tanaka N, Tomita Y, Takahashi K (2004) Jpn J Appl Phys 43:2264–2270. doi: 10.1143/JJAP.43.2264 CrossRefGoogle Scholar
  5. 5.
    Sakuma K, Andry PS, Dang B, Maria J, Tsang C, Patel C, Wright SL, Webb B, Sprogis E, Kang SK, Polastre R, Horton R, Knickerbocker JU (2007) In: Proceeding of 57th electronic components of technology conference, IEEE Components, Packaging, and Manufacturing Technology, Reno, pp 627–632Google Scholar
  6. 6.
    Deng X, Sidhu RS, Johnson P, Chaela N (2005) Metall Mater Trans A 36:55–64. doi: 10.1007/s11661-005-0138-8 CrossRefGoogle Scholar
  7. 7.
    Eduardo Franco DM, Weiqun P (2007) J Electron Mater 36:783–797. doi: 10.1007/s11664-006-0062-8 CrossRefGoogle Scholar
  8. 8.
    Che FX, Luan JE, Baraton X (2008) In: Proceeding of 58th electronic components of technology conference, IEEE Components, Packaging, and Manufacturing Technology, Florida, pp 485–490Google Scholar
  9. 9.
    Wang YW, Kao CR (2009) Development of lead-free solders with superior drop test reliability performance. International conference on electronic packaging technology & high density packaging (ICEPT-HDP 2009), Beijing, pp 458–463Google Scholar
  10. 10.
    Zhu WH, Xu L, Pang JHL, Zhang XR, Poh E, Sun YF, Sun AYS, Wang CK, Tan HB (2008) In: Proceeding of 58th electronic components of technology conference, IEEE Components, Packaging, and Manufacturing Technology, Florida, pp 1667–1672Google Scholar
  11. 11.
    Yu CY, Lee TK, Tsai M, Liu KC, Duh JG (2010) J Electron Mater 39:2552–2554. doi: 10.1007/s11664-010-1372-4 Google Scholar
  12. 12.
    Kim JY, Yu J, Kim SH (2009) Acta Mater 57:5001–5012. doi: 10.1016/j.actamat.2009.06.060 CrossRefGoogle Scholar
  13. 13.
    Kang SK, Shih DY, Leonard D, Henderson DW, Gosselin T, Cho S, Yu J, Choi WK (2004) JOM 56:34–38. doi: 10.1007/s11837-004-0108-4 CrossRefGoogle Scholar
  14. 14.
    Jee YK, Ko YH, Yu J (2007) J Mater Res 22:1879–1887. doi: 10.1557/jmr.2007.0234 CrossRefGoogle Scholar
  15. 15.
    McCormack M, Jin S (1994) J Electron Mater 23:635–640. doi: 10.1007/BF02653349 CrossRefGoogle Scholar
  16. 16.
    Fawzy A (2007) Mater Character 58:323–331. doi: 10.1016/j.matchar.2006.05.013 CrossRefGoogle Scholar
  17. 17.
    Yu CY, Wang KJ, Duh JG (2010) J Electron Mater 39:230–237. doi: 10.1007/s11664-009-0992-z CrossRefGoogle Scholar
  18. 18.
    Cho MG, Kang SK, Shih D, Lee HM (2007) J Electron Mater 36:1501–1509. doi: 10.1007/s11664-007-0254-x CrossRefGoogle Scholar
  19. 19.
    Hayashi A, Kao CR, Chang YA (1997) Scripta Mater 37:393–398. doi: 10.1016/S1359-6462(97)00129-2 CrossRefGoogle Scholar
  20. 20.
    Wang S, Liu CY (2006) Scripta Mater 55:347–350. doi: 10.1016/j.scriptamat.2006.04.027 CrossRefGoogle Scholar
  21. 21.
    Wang SJ, Liu CY (2006) J Electron Mater 35:1955–1960. doi: 10.1007/s11664-006-0299-2 CrossRefGoogle Scholar
  22. 22.
    Yu CY, Duh JG (2011) Scripta Mater 65:783–786. doi: 10.1016/j.scriptamat.2011.07.029 CrossRefGoogle Scholar
  23. 23.
    Kim YM, Roh HR, Kim S, Kim YH (2010) J Electron Mater 39:2504–2512. doi: 10.1007/s11664-010-1379-x CrossRefGoogle Scholar
  24. 24.
    Kim YM, Harr KM, Kim YH (2010) Electron Mater Lett 6:151–154. doi: 10.3365/eml.2010.12.151 CrossRefGoogle Scholar
  25. 25.
    Chang J, Seo S, Lee HM (2010) J Electron Mater 39:2643–2652. doi: 10.1007/s11664-010-1313-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations