Skip to main content
Log in

Hot deformation characteristics and strain-dependent constitutive analysis of Inconel 600 superalloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hot deformation characteristics and constitutive analysis of Inconel (IN) 600 superalloy were investigated at elevated temperatures. Hot compressive tests were carried out in the temperature and strain rate ranging from 900 to 1150 °C and 1 × 10−3–10 s−1, respectively. The flow behavior analyses and microstructural observations indicate that the softening mechanisms were related to dynamic recrystallization (DRX) and grain growth. DRX played a dominant role in the microstructural evolution at low temperatures (or high strain rates). DRX was the dominant softening effect at low strains on testing at high temperatures with low strain rates, whereas growth of the dynamically recrystallized grains was responsible for softening at high strains. The flow stress of IN 600 was fitted well by the constitutive equation of the hyperbolic sine function under the deformation conditions performed in this study. A constitutive equation as a function of strain was established through a simple extension of the hyperbolic sine constitutive relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. McQueen HJ, Imbert CAC (2004) J Alloys Compd 378:35

    Article  CAS  Google Scholar 

  2. Fang YL, Liu ZY, Song HM, Jiang LZ (2009) Mater Sci Eng A A526:128

    CAS  Google Scholar 

  3. Guo SL, Li DF, Pen HJ, Guo QM, Hu J (2011) J Nucl Mater 410:52

    Article  CAS  Google Scholar 

  4. Semiatin SL, Fagin PN, Glavicic MG, Raabe D (2004) Scripta Mater 50:625

    Article  CAS  Google Scholar 

  5. Medeiros SC, Prasad YVRK, Frazier WG, Srinivasan R (2000) Mater Sci Eng A A293:198

    CAS  Google Scholar 

  6. Ponge D, Gottstein G (1998) Acta Mater 46:69

    Article  CAS  Google Scholar 

  7. Sellars C, Tegart WM (1966) Acta Metall 14:1136

    Article  CAS  Google Scholar 

  8. Sellars C, Tegart WM (1972) Int Metall Rev 17:1

    Article  CAS  Google Scholar 

  9. McQueen HJ, Ryan ND (2002) Mater Sci Eng A A322:43

    CAS  Google Scholar 

  10. Hsu SE, Edwards GR, Sherby OD (1983) Acta Metall 31:763

    Article  CAS  Google Scholar 

  11. Cai DY, Xiong LY, Liu WC, Sun GD, Yao M (2009) Mater Des 30:921

    Article  CAS  Google Scholar 

  12. Yuan H, Liu WC (2005) Mater Sci Eng A A408:281

    CAS  Google Scholar 

  13. Thomas A, El-Wahabi M, Cabrera JM, Prado JM (2006) J Mater Process Technol 177:469

    Article  CAS  Google Scholar 

  14. Jiang P, Fu WT, Wang ZH, Bai XH, Zhao XC, Lv ZQ (2011) J Mater Sci 46:4654. doi:10.1007/s10853-011-5371-5

    Article  CAS  Google Scholar 

  15. Farnoush H, Momeni A, Dehghani K, Aghazadeh Mohandesi J, Keshmiri H (2010) Mater Des 31:220

    Article  CAS  Google Scholar 

  16. Slooff FA, Zhou J, Duszczyk J, Katgerman L (2008) J Mater Sci 43:7165. doi:10.1007/s10853-008-3014-2

    Article  CAS  Google Scholar 

  17. Luo J, Li MQ, Yu WX, Li H (2009) Mater Sci Eng A A504:90

    CAS  Google Scholar 

  18. Lin YC, Liu G (2009) Mater Sci Eng A A523:139

    CAS  Google Scholar 

  19. Bombač D, Fazarinc M, Kugler G, Spajić S (2008) RMZ Mater Geoenviron 55:319

    Google Scholar 

  20. Wang Y, Shao WZ, Zhen L, Yang L, Zhang XM (2008) Mater Sci Eng A A497:479

    CAS  Google Scholar 

  21. Liu Y, Hu R, Li JS, Kou HC, Li HW, Chang H, Fu HZ (2009) J Mater Process Technol 209:4020

    Article  CAS  Google Scholar 

  22. Pruthi DD, Anand MS, Agarwala RP (1977) J Nucl Mater 6:206

    Article  Google Scholar 

  23. Prasad YVRK, Rao KP, Hort N, Kainer KU (2008) Mater Lett 62:4207

    Article  CAS  Google Scholar 

  24. Zhang H, Konopleva EV, McQueen HJ (2001) Mater Sci Eng A A319–321:711

    Google Scholar 

  25. Zener C, Hollomon JH (1944) J Appl Phys 15:22

    Article  Google Scholar 

  26. Dehghan-Manshadi A, Barnett MR, Hodgson PD (2008) Mater Sci Eng A A485:664

    CAS  Google Scholar 

  27. Rath BB, Imam MA, Pande CS (2000) Mater Phys Mech 1:61

    CAS  Google Scholar 

  28. Pande CS, Ashraf Imam M (2009) Mater Sci Eng A A512:82

    CAS  Google Scholar 

  29. Mahajan S, Pande CS, Imam MA, Rath BB (1997) Acta Mater 45:2633

    Article  CAS  Google Scholar 

  30. Slooff FA, Zhou J, Duszczyk J, Katgerman L (2007) Constitutive behaviour of wrought magnesium alloy AZ61. In: Beals RS, Luo AA, Neelameggham NR, Pekguleryuz MO (eds) Magnesium Technology 2007. TMS, Warrendale, p 363

    Google Scholar 

  31. Slooff FA, Zhou J, Duszczyk J, Katgerman L (2007) Scripta Mater 57:759

    Article  CAS  Google Scholar 

  32. Verlinden B, Suhadi A, Delaey L (1993) Scripta Metall 28:1441

    Article  CAS  Google Scholar 

  33. Momeni A, Dehghani K (2011) Mater Sci Eng A A528:1448

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horng-Yu Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HY., Zhu, FJ., Wang, SC. et al. Hot deformation characteristics and strain-dependent constitutive analysis of Inconel 600 superalloy. J Mater Sci 47, 3971–3981 (2012). https://doi.org/10.1007/s10853-012-6250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6250-4

Keywords

Navigation