Advertisement

Journal of Materials Science

, Volume 47, Issue 9, pp 3971–3981 | Cite as

Hot deformation characteristics and strain-dependent constitutive analysis of Inconel 600 superalloy

  • Horng-Yu Wu
  • Feng-Jun Zhu
  • Shang-Chih Wang
  • Woei-Ren Wang
  • Chien-Cheng Wang
  • Chui-Hung Chiu
Article

Abstract

The hot deformation characteristics and constitutive analysis of Inconel (IN) 600 superalloy were investigated at elevated temperatures. Hot compressive tests were carried out in the temperature and strain rate ranging from 900 to 1150 °C and 1 × 10−3–10 s−1, respectively. The flow behavior analyses and microstructural observations indicate that the softening mechanisms were related to dynamic recrystallization (DRX) and grain growth. DRX played a dominant role in the microstructural evolution at low temperatures (or high strain rates). DRX was the dominant softening effect at low strains on testing at high temperatures with low strain rates, whereas growth of the dynamically recrystallized grains was responsible for softening at high strains. The flow stress of IN 600 was fitted well by the constitutive equation of the hyperbolic sine function under the deformation conditions performed in this study. A constitutive equation as a function of strain was established through a simple extension of the hyperbolic sine constitutive relation.

Keywords

Flow Stress High Strain Rate Peak Stress Duplex Stainless Steel Constitutive Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was financially supported by the Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute.

References

  1. 1.
    McQueen HJ, Imbert CAC (2004) J Alloys Compd 378:35CrossRefGoogle Scholar
  2. 2.
    Fang YL, Liu ZY, Song HM, Jiang LZ (2009) Mater Sci Eng A A526:128Google Scholar
  3. 3.
    Guo SL, Li DF, Pen HJ, Guo QM, Hu J (2011) J Nucl Mater 410:52CrossRefGoogle Scholar
  4. 4.
    Semiatin SL, Fagin PN, Glavicic MG, Raabe D (2004) Scripta Mater 50:625CrossRefGoogle Scholar
  5. 5.
    Medeiros SC, Prasad YVRK, Frazier WG, Srinivasan R (2000) Mater Sci Eng A A293:198Google Scholar
  6. 6.
    Ponge D, Gottstein G (1998) Acta Mater 46:69CrossRefGoogle Scholar
  7. 7.
    Sellars C, Tegart WM (1966) Acta Metall 14:1136CrossRefGoogle Scholar
  8. 8.
    Sellars C, Tegart WM (1972) Int Metall Rev 17:1CrossRefGoogle Scholar
  9. 9.
    McQueen HJ, Ryan ND (2002) Mater Sci Eng A A322:43Google Scholar
  10. 10.
    Hsu SE, Edwards GR, Sherby OD (1983) Acta Metall 31:763CrossRefGoogle Scholar
  11. 11.
    Cai DY, Xiong LY, Liu WC, Sun GD, Yao M (2009) Mater Des 30:921CrossRefGoogle Scholar
  12. 12.
    Yuan H, Liu WC (2005) Mater Sci Eng A A408:281Google Scholar
  13. 13.
    Thomas A, El-Wahabi M, Cabrera JM, Prado JM (2006) J Mater Process Technol 177:469CrossRefGoogle Scholar
  14. 14.
    Jiang P, Fu WT, Wang ZH, Bai XH, Zhao XC, Lv ZQ (2011) J Mater Sci 46:4654. doi: 10.1007/s10853-011-5371-5 CrossRefGoogle Scholar
  15. 15.
    Farnoush H, Momeni A, Dehghani K, Aghazadeh Mohandesi J, Keshmiri H (2010) Mater Des 31:220CrossRefGoogle Scholar
  16. 16.
    Slooff FA, Zhou J, Duszczyk J, Katgerman L (2008) J Mater Sci 43:7165. doi: 10.1007/s10853-008-3014-2 CrossRefGoogle Scholar
  17. 17.
    Luo J, Li MQ, Yu WX, Li H (2009) Mater Sci Eng A A504:90Google Scholar
  18. 18.
    Lin YC, Liu G (2009) Mater Sci Eng A A523:139Google Scholar
  19. 19.
    Bombač D, Fazarinc M, Kugler G, Spajić S (2008) RMZ Mater Geoenviron 55:319Google Scholar
  20. 20.
    Wang Y, Shao WZ, Zhen L, Yang L, Zhang XM (2008) Mater Sci Eng A A497:479Google Scholar
  21. 21.
    Liu Y, Hu R, Li JS, Kou HC, Li HW, Chang H, Fu HZ (2009) J Mater Process Technol 209:4020CrossRefGoogle Scholar
  22. 22.
    Pruthi DD, Anand MS, Agarwala RP (1977) J Nucl Mater 6:206CrossRefGoogle Scholar
  23. 23.
    Prasad YVRK, Rao KP, Hort N, Kainer KU (2008) Mater Lett 62:4207CrossRefGoogle Scholar
  24. 24.
    Zhang H, Konopleva EV, McQueen HJ (2001) Mater Sci Eng A A319–321:711Google Scholar
  25. 25.
    Zener C, Hollomon JH (1944) J Appl Phys 15:22CrossRefGoogle Scholar
  26. 26.
    Dehghan-Manshadi A, Barnett MR, Hodgson PD (2008) Mater Sci Eng A A485:664Google Scholar
  27. 27.
    Rath BB, Imam MA, Pande CS (2000) Mater Phys Mech 1:61Google Scholar
  28. 28.
    Pande CS, Ashraf Imam M (2009) Mater Sci Eng A A512:82Google Scholar
  29. 29.
    Mahajan S, Pande CS, Imam MA, Rath BB (1997) Acta Mater 45:2633CrossRefGoogle Scholar
  30. 30.
    Slooff FA, Zhou J, Duszczyk J, Katgerman L (2007) Constitutive behaviour of wrought magnesium alloy AZ61. In: Beals RS, Luo AA, Neelameggham NR, Pekguleryuz MO (eds) Magnesium Technology 2007. TMS, Warrendale, p 363Google Scholar
  31. 31.
    Slooff FA, Zhou J, Duszczyk J, Katgerman L (2007) Scripta Mater 57:759CrossRefGoogle Scholar
  32. 32.
    Verlinden B, Suhadi A, Delaey L (1993) Scripta Metall 28:1441CrossRefGoogle Scholar
  33. 33.
    Momeni A, Dehghani K (2011) Mater Sci Eng A A528:1448Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Horng-Yu Wu
    • 1
  • Feng-Jun Zhu
    • 1
  • Shang-Chih Wang
    • 2
  • Woei-Ren Wang
    • 2
  • Chien-Cheng Wang
    • 2
  • Chui-Hung Chiu
    • 3
  1. 1.Department of Mechanical EngineeringChung Hua UniversityHsinchuTaiwan
  2. 2.Nanopowder and Thin Film Technology CenterITRI South, Industrial Technology Research InstituteTainanTaiwan
  3. 3.Material and Chemical Research LaboratoriesIndustrial Technology Research InstituteChutungTaiwan

Personalised recommendations