Skip to main content
Log in

Simultaneous measurements of thermal conductivity and thermal diffusivity of Se90−x Te5Sn5In x (x = 0, 3, 6, and 9) multi-component chalcogenide glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Measurements of thermal conductivity and thermal diffusivity of twin pellets of Se90−x Te5Sn5In x (x = 0, 3, 6, and 9) chalcogenide glasses were carried out at room temperature using transient plane source technique. The measured values of thermal conductivity and thermal diffusivity were used to determine the specific heat per unit volume of these glasses in the composition range of investigation. Results indicated that both values of thermal conductivity and thermal diffusivity were increased with addition of indium concentration at the cost of selenium, whereas the specific heat per unit volume was slightly decreases with increase of indium content. This compositional dependence behavior of the thermal conductivity and diffusivity can be explained in terms of the iono-covalent type of bonds, which In (indium) makes with Se as it is incorporated in the Se–Te–Sn glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nemec P, Frumar M (2002) J Non-Cryst Solids 299–302:1018

    Article  Google Scholar 

  2. Ghai YG, Kim KH, Park BJ, Heo J (2001) Appl Phys Lett 78:1249

    Article  Google Scholar 

  3. RowLands J, Kasap S (1997) Phys Today 50:24

    Article  CAS  Google Scholar 

  4. Lucovsy G (1996) Mater Res Bull 4:505

    Article  Google Scholar 

  5. Schotmiller J, Tabak M, Lucovsy G, Ward A (1970) J Non-Cryst Solids 4:80

    Article  Google Scholar 

  6. Maruyama E (1982) Jpn J Appl Phys 21:213

    Article  CAS  Google Scholar 

  7. Smith AW (1974) Appl Opt 13:795

    Article  CAS  Google Scholar 

  8. Mehta N, Singh K, Kumar S (2009) Phase Transitions 82:43

    Article  CAS  Google Scholar 

  9. Singh K, Saxena NS (2005) Mater Sci Eng A 392:38

    Article  Google Scholar 

  10. Singh K, Saxena NS (2003) Mater Sci Eng A 346:287

    Article  Google Scholar 

  11. Saxena NS, Mousa Imran MA, Singh K (2002) Bullet Mater Sci 25:241

    Article  CAS  Google Scholar 

  12. Singh K, Mahrjan NB, Saxena NS (2002) Phys Stat Sol (a) 189:197

    Article  CAS  Google Scholar 

  13. Mehta N, Kumar A (2006) J Therm Anal Calorim 83:669

    Article  CAS  Google Scholar 

  14. Kaur G, Komatsu T (2000) J Mater Sci 35:903. doi:10.1023/A:1004798308059

    Article  CAS  Google Scholar 

  15. Ohta T, Inoue K, Uchida M, Yoshida K, Akiyama T, Fukukawa S, Nagata K, Nakamura S (1989). In: Proceedings of international symposium on optical memory, Japanese Journal of Applied Physics, vol 28. p 123

  16. Iwasaki H, Ide Y, Harigaya M, Kageyama Y, Fujimura I (1992) Jpn J Appl Phys 31:461

    Article  CAS  Google Scholar 

  17. Iwasaki H, Harigaya M, Nonoyama O, Kageyama Y, Takahashi M, Yamada K, Deguchi H, Ide Y (1993) Jpn J Appl Phys 32:5241

    Article  CAS  Google Scholar 

  18. Wang Z, Tu C, Li Y, Chen Q (1995) J Non-Cryst Solids 191:132

    Article  CAS  Google Scholar 

  19. Vassilev VS, Boycheva SV, Petkov P (2002) Mater Lett 52:126

    Article  CAS  Google Scholar 

  20. Vassilev V, Tomova K, Parvanova V, Parvanov S (2007) Mater Chem Phys 103:312

    Article  CAS  Google Scholar 

  21. Chander R, Thangaraj R (2007) Chalcogenide Lett 5:229

    Google Scholar 

  22. Vassilev V, Hristova-Vasileva T, Aljihmani L (2008) Chalcogenide Lett 5:39

    CAS  Google Scholar 

  23. Dahshan A, Aly KA (2008) Acta Mater 56:4869

    Article  CAS  Google Scholar 

  24. Aly KA, Othman AA, Abousehly AM (2009) J Alloys Compd 467:417

    Article  CAS  Google Scholar 

  25. Kumar S, Singh K, Mehta N (2010) Phil Mag Lett 90:547

    Article  CAS  Google Scholar 

  26. Kumar S, Singh K, Mehta N (2010) Phys Scripta 82:045601

    Article  Google Scholar 

  27. Kumar S, Singh K (2010) Phys B 405:3135

    Article  CAS  Google Scholar 

  28. Saxena NS, Pradhan PR, Ladiwala GD, Bala K, Saxena MP (1992) Solid State Ion 723

  29. Gustafsson SE (1991) Rev Sci Instrum 62:797

    Article  CAS  Google Scholar 

  30. Lucovsky GJ (1987) Non Cryst Solids 97/98:3950

    Google Scholar 

  31. Shukla RK, Swarup S, Kumar A, Nigam AN (1989) Semicond Sci Technol 4:681

    Article  CAS  Google Scholar 

  32. Sreeram AN, Swiler DR, Varshneya AK (1991) J Non-Cryst Solids 127:287

    Article  CAS  Google Scholar 

  33. Kumar S, Singh K (2011) Phys B 406:1519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to University Grant Commission, New Delhi for provide financial assistance for thermal constant analyzer under UGC Networking Scheme. The authors also wish to thank CSIR, New Delhi, for providing financial assistance under the project grant CSIR Proj. 01(2456)/11/AMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedar Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Singh, K. Simultaneous measurements of thermal conductivity and thermal diffusivity of Se90−x Te5Sn5In x (x = 0, 3, 6, and 9) multi-component chalcogenide glasses. J Mater Sci 47, 3949–3952 (2012). https://doi.org/10.1007/s10853-011-6244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6244-7

Keywords

Navigation