Journal of Materials Science

, Volume 47, Issue 9, pp 3949–3952 | Cite as

Simultaneous measurements of thermal conductivity and thermal diffusivity of Se90−x Te5Sn5In x (x = 0, 3, 6, and 9) multi-component chalcogenide glasses



Measurements of thermal conductivity and thermal diffusivity of twin pellets of Se90−x Te5Sn5In x (x = 0, 3, 6, and 9) chalcogenide glasses were carried out at room temperature using transient plane source technique. The measured values of thermal conductivity and thermal diffusivity were used to determine the specific heat per unit volume of these glasses in the composition range of investigation. Results indicated that both values of thermal conductivity and thermal diffusivity were increased with addition of indium concentration at the cost of selenium, whereas the specific heat per unit volume was slightly decreases with increase of indium content. This compositional dependence behavior of the thermal conductivity and diffusivity can be explained in terms of the iono-covalent type of bonds, which In (indium) makes with Se as it is incorporated in the Se–Te–Sn glass.


Thermal Diffusivity Chalcogenide Glass SnSe2 Thermal Transport Property Transient Plane Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to University Grant Commission, New Delhi for provide financial assistance for thermal constant analyzer under UGC Networking Scheme. The authors also wish to thank CSIR, New Delhi, for providing financial assistance under the project grant CSIR Proj. 01(2456)/11/AMR-II.


  1. 1.
    Nemec P, Frumar M (2002) J Non-Cryst Solids 299–302:1018CrossRefGoogle Scholar
  2. 2.
    Ghai YG, Kim KH, Park BJ, Heo J (2001) Appl Phys Lett 78:1249CrossRefGoogle Scholar
  3. 3.
    RowLands J, Kasap S (1997) Phys Today 50:24CrossRefGoogle Scholar
  4. 4.
    Lucovsy G (1996) Mater Res Bull 4:505CrossRefGoogle Scholar
  5. 5.
    Schotmiller J, Tabak M, Lucovsy G, Ward A (1970) J Non-Cryst Solids 4:80CrossRefGoogle Scholar
  6. 6.
    Maruyama E (1982) Jpn J Appl Phys 21:213CrossRefGoogle Scholar
  7. 7.
    Smith AW (1974) Appl Opt 13:795CrossRefGoogle Scholar
  8. 8.
    Mehta N, Singh K, Kumar S (2009) Phase Transitions 82:43CrossRefGoogle Scholar
  9. 9.
    Singh K, Saxena NS (2005) Mater Sci Eng A 392:38CrossRefGoogle Scholar
  10. 10.
    Singh K, Saxena NS (2003) Mater Sci Eng A 346:287CrossRefGoogle Scholar
  11. 11.
    Saxena NS, Mousa Imran MA, Singh K (2002) Bullet Mater Sci 25:241CrossRefGoogle Scholar
  12. 12.
    Singh K, Mahrjan NB, Saxena NS (2002) Phys Stat Sol (a) 189:197CrossRefGoogle Scholar
  13. 13.
    Mehta N, Kumar A (2006) J Therm Anal Calorim 83:669CrossRefGoogle Scholar
  14. 14.
    Kaur G, Komatsu T (2000) J Mater Sci 35:903. doi: 10.1023/A:1004798308059 CrossRefGoogle Scholar
  15. 15.
    Ohta T, Inoue K, Uchida M, Yoshida K, Akiyama T, Fukukawa S, Nagata K, Nakamura S (1989). In: Proceedings of international symposium on optical memory, Japanese Journal of Applied Physics, vol 28. p 123Google Scholar
  16. 16.
    Iwasaki H, Ide Y, Harigaya M, Kageyama Y, Fujimura I (1992) Jpn J Appl Phys 31:461CrossRefGoogle Scholar
  17. 17.
    Iwasaki H, Harigaya M, Nonoyama O, Kageyama Y, Takahashi M, Yamada K, Deguchi H, Ide Y (1993) Jpn J Appl Phys 32:5241CrossRefGoogle Scholar
  18. 18.
    Wang Z, Tu C, Li Y, Chen Q (1995) J Non-Cryst Solids 191:132CrossRefGoogle Scholar
  19. 19.
    Vassilev VS, Boycheva SV, Petkov P (2002) Mater Lett 52:126CrossRefGoogle Scholar
  20. 20.
    Vassilev V, Tomova K, Parvanova V, Parvanov S (2007) Mater Chem Phys 103:312CrossRefGoogle Scholar
  21. 21.
    Chander R, Thangaraj R (2007) Chalcogenide Lett 5:229Google Scholar
  22. 22.
    Vassilev V, Hristova-Vasileva T, Aljihmani L (2008) Chalcogenide Lett 5:39Google Scholar
  23. 23.
    Dahshan A, Aly KA (2008) Acta Mater 56:4869CrossRefGoogle Scholar
  24. 24.
    Aly KA, Othman AA, Abousehly AM (2009) J Alloys Compd 467:417CrossRefGoogle Scholar
  25. 25.
    Kumar S, Singh K, Mehta N (2010) Phil Mag Lett 90:547CrossRefGoogle Scholar
  26. 26.
    Kumar S, Singh K, Mehta N (2010) Phys Scripta 82:045601CrossRefGoogle Scholar
  27. 27.
    Kumar S, Singh K (2010) Phys B 405:3135CrossRefGoogle Scholar
  28. 28.
    Saxena NS, Pradhan PR, Ladiwala GD, Bala K, Saxena MP (1992) Solid State Ion 723Google Scholar
  29. 29.
    Gustafsson SE (1991) Rev Sci Instrum 62:797CrossRefGoogle Scholar
  30. 30.
    Lucovsky GJ (1987) Non Cryst Solids 97/98:3950Google Scholar
  31. 31.
    Shukla RK, Swarup S, Kumar A, Nigam AN (1989) Semicond Sci Technol 4:681CrossRefGoogle Scholar
  32. 32.
    Sreeram AN, Swiler DR, Varshneya AK (1991) J Non-Cryst Solids 127:287CrossRefGoogle Scholar
  33. 33.
    Kumar S, Singh K (2011) Phys B 406:1519CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations