Journal of Materials Science

, Volume 47, Issue 8, pp 3855–3866 | Cite as

Facile tailoring of titanate nanostructures at low alkaline concentration by a solvothermal route

  • Xiaojun Shen
  • Jinlong Zhang
  • Baozhu Tian


Nanostructured titanates with different morphologies such as nanoflakes, nanotubes, and nanofibers have been selectively synthesized by a simple solvothermal treatment of commercial anatase TiO2 using the mixed water–ethanol cosolvent at low alkaline concentration. The effects of solvothermal temperature, volume ratio of H2O to C2H5OH, amount of NaOH and solvents on the formation of titanate nanostructures have been systematically studied through X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). At low concentration of NaOH solution (the actual concentration of OH in the solution is only 0.58 M), different titanate nanostructures are achieved by simply changing the volume ratio of H2O to C2H5OH at 180 °C and titanate nanotubes can be synthesized between 100 and 180 °C. A probable formation mechanism is proposed based on XRD, SEM and TEM analysis. The influence of cosolvent on the transformation from anatase TiO2 to titanate is also investigated.


TiO2 Titanate Lamellar Structure Sodium Titanate Titanate Nanotubes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by National Basic Research Program of China (973 Program, 2010CB732306), National Nature Science Foundation of China (21007016 and 20977030), the Project of International Cooperation of the Ministry of Science and Technology of China (2011DFA50530), Science and Technology Commission of Shanghai Municipality (10520709900 and 10JC1403900) and the Fundamental Research Funds for the Central Universities.


  1. 1.
    Iijima S (1991) Nature 56:354Google Scholar
  2. 2.
    Hu JT, Odom TW, Lieber CM (1999) Acc Chem Res 32:435CrossRefGoogle Scholar
  3. 3.
    Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807CrossRefGoogle Scholar
  4. 4.
    Niu LL, Shao MW, Wang S, Lu L, Gao HZ, Wang J (2008) J Mater Sci 43:1510. doi: 10.1007/s10853-007-2374-3 CrossRefGoogle Scholar
  5. 5.
    Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) J Phys Chem B 109:19422CrossRefGoogle Scholar
  6. 6.
    Armstrong AR, Armstrong G, Canales J, Bruce PG (2005) J Power Sources 146:501CrossRefGoogle Scholar
  7. 7.
    Sun X, Li Y (2003) Chem Eur J 9:2229CrossRefGoogle Scholar
  8. 8.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160CrossRefGoogle Scholar
  9. 9.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Adv Mater 11:1307CrossRefGoogle Scholar
  10. 10.
    Morgan DL, Triani G, Blackford MG, Raftery NA, Frost RL (2011) J Mater Sci 46:548. doi: 10.1007/s10853-010-5016-0 CrossRefGoogle Scholar
  11. 11.
    Zhao B, Chen F, Jiao YC, Zhang JL (2010) J Mater Chem 20:7990CrossRefGoogle Scholar
  12. 12.
    Zhao B, Chen F, Gu XN, Zhang JL (2010) Chem Asian J 5:1546CrossRefGoogle Scholar
  13. 13.
    Zhao B, Chen F, Qu WW, Zhang JL (2009) J Solid State Chem 182:2225CrossRefGoogle Scholar
  14. 14.
    Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) J Mater Chem 14:3370CrossRefGoogle Scholar
  15. 15.
    Kukovecz Á, Hodos M, Horváth E, Radnöczi G, Kónya Z, Kiricsi I (2005) J Phys Chem B 109:17781CrossRefGoogle Scholar
  16. 16.
    Morgan DL, Zhu HY, Frost RL, Waclawik ER (2008) Chem Mater 20:3800CrossRefGoogle Scholar
  17. 17.
    Morgan DL, Liu HW, Frost RL, Waclawik ER (2010) J Phys Chem C 114:101CrossRefGoogle Scholar
  18. 18.
    Yuan ZY, Su BL (2004) Colloids Surf A 241:173CrossRefGoogle Scholar
  19. 19.
    Zhu HY, Lan Y, Gao XP, Ringer SP, Zheng ZF, Song DY, Zhao JC (2005) J Am Chem Soc 127:6730CrossRefGoogle Scholar
  20. 20.
    Wen B, Liu C, Liu Y (2005) Chem Lett 34:396CrossRefGoogle Scholar
  21. 21.
    Wen B, Liu C, Liu Y (2005) New J Chem 29:969CrossRefGoogle Scholar
  22. 22.
    Wang Q, Wen Z, Li J (2006) Inorg Chem 45:6944CrossRefGoogle Scholar
  23. 23.
    Das K, Panda S, Chaudhuri S (2008) J Cryst Growth 310:3792CrossRefGoogle Scholar
  24. 24.
    Bavykin DV, Kulak AN, Walsh FC (2008) Cryst Growth Des 20:3800Google Scholar
  25. 25.
    Huang JQ, Cao YG, Wang ML, Huang CG, Deng ZH, Tong H, Liu ZG (2010) J Phys Chem C 114:14748Google Scholar
  26. 26.
    Chen Q, Du GH, Zhang S, Peng LM (2002) Acta Crystallogr B58:587Google Scholar
  27. 27.
    Kim S, Yun Y, Oh H, Hong SH, Roberts CA, Routray K, Wachs IE (2010) J Phys Chem Lett 1:130CrossRefGoogle Scholar
  28. 28.
    Liu HW, Yang DJ, Zheng ZF, Ke XB, Waclawik E, Zhu HY, Frost RL (2010) J Raman Spectrosc 41:1331CrossRefGoogle Scholar
  29. 29.
    Kolen’ko YV, Kovnir KA, Gavrilov AI, Garshev AV, Frantti J, Lebedev OI, Churagulov BR, Tendeloo GV, Yoshimura M (2006) J Phys Chem B 110:4030CrossRefGoogle Scholar
  30. 30.
    Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Chem Phys Lett 365:427CrossRefGoogle Scholar
  31. 31.
    Zhang S, Peng TY, Chen Q, Du GH, Dawson G, Zhou WZ (2003) Phys Rev Lett 91:256103CrossRefGoogle Scholar
  32. 32.
    Zhang S, Chen Q, Peng LM (2005) Phys Rev B 71:014104CrossRefGoogle Scholar
  33. 33.
    Ma R, Bando Y, Sasaki T (2004) J Phys Chem B 108:2115CrossRefGoogle Scholar
  34. 34.
    Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Appl Phys Lett 82:281CrossRefGoogle Scholar
  35. 35.
    Wu D, Liu J, Zhao X, Li A, Chen Y, Ming N (2006) Chem Mater 18:547CrossRefGoogle Scholar
  36. 36.
    Bavykin DV, Cressey BA, Walsh FC (2007) Aust J Chem 60:95CrossRefGoogle Scholar
  37. 37.
    Li J, Zhou ZX, Zhu LH, Xu K, Tang HQ (2007) J Phys Chem C 111:16768CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations