Advertisement

Journal of Materials Science

, Volume 47, Issue 9, pp 3925–3948 | Cite as

Materials development for intermediate-temperature solid oxide electrochemical devices

  • Ainara Aguadero
  • Lydia Fawcett
  • Samuel Taub
  • Russell Woolley
  • Kuan-Ting Wu
  • Ning Xu
  • John A. Kilner
  • Stephen J. Skinner
Anniversary Review

Abstract

One of the major challenges in developing electrochemical devices for energy generation has been the identification and development of materials with outstanding performance at reduced (intermediate) temperatures (500–700 °C), increasing the durability and lowering the cost of the device. A solid-state electrochemical cell is in outline a simple device consisting of three components: anode, electrolyte and cathode. The function of each component is critical to cell performance, and as interest in fuel cells and electrolysers has gathered pace, many materials have been evaluated as functional components of these cells. Typically, the requirement for new materials development has been the drive to lower operation temperature, overcoming sluggish reaction kinetics in existing materials. Novel materials for the functional components of both electrolysers and fuel cells are introduced, with emphasis placed on the air electrode and electrolyte, with the potential of new classes of materials discussed, including layered materials, defect fluorites and tetrahedrally coordinated phases. Furthermore, the opportunity presented by thin film deposition to characterize anisotropic transport in materials and develop devices based on thin films is discussed.

Keywords

Cathode Material LaCoO3 Maximum Power Density Composite Cathode Oxygen Permeation Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Steele BCH, Heinzel A (2001) Nature 414:345CrossRefGoogle Scholar
  2. 2.
    Matsuzaki Y, Yasuda I (2002) Solid State Ionics 152:463CrossRefGoogle Scholar
  3. 3.
    Athanassiou C, Pekridis G, Kaklidis N, Kalimeri K, Vartzoka S, Marnellos G (2007) Int J Hydrogen Energ 32:38CrossRefGoogle Scholar
  4. 4.
    Bastidas DM, Tao SW, Irvine JTS (2006) J Mater Chem 16:1603CrossRefGoogle Scholar
  5. 5.
    Liu M, Yu B, Xu J, Chen J (2008) J Power Sources 177:493CrossRefGoogle Scholar
  6. 6.
    Yu B, Zhang W, Chen J, Xu J, Wang S (2008) Sci China B Chem 51:289CrossRefGoogle Scholar
  7. 7.
    Huang K, Wan J, Goodenough JB (2001) J Mater Sci 36:1093. doi: 10.1023/A:1004813305237 CrossRefGoogle Scholar
  8. 8.
    Ralph JM, Schoeler AC, Krumpelt M (2001) J Mater Sci 36:1161. doi: 10.1023/A:1004881825710 CrossRefGoogle Scholar
  9. 9.
    Steele BCH (2001) J Mater Sci 36:1053. doi: 10.1023/A:1004853019349 CrossRefGoogle Scholar
  10. 10.
    Minh NQ (1993) J Am Ceram Soc 76:563CrossRefGoogle Scholar
  11. 11.
    Badwal SPS (1992) Solid State Ionics 52:23CrossRefGoogle Scholar
  12. 12.
    Etsell TH, Flengas SN (1970) Chem Rev 70:339CrossRefGoogle Scholar
  13. 13.
    Steele BCH (2000) Solid State Ionics 129:95CrossRefGoogle Scholar
  14. 14.
    Sammes NM, Tompsett GA, Nafe H, Aldinger F (1999) J Eur Ceram Soc 19:1801CrossRefGoogle Scholar
  15. 15.
    Takahashi T, Iwahara H, Arao T (1975) J Appl Electrochem 5:187CrossRefGoogle Scholar
  16. 16.
    Verkerk MJ, Keizer K, Burggraaf AJ (1980) J Appl Electrochem 10:81CrossRefGoogle Scholar
  17. 17.
    Jacobson AJ (2010) Chem Mater 22:660CrossRefGoogle Scholar
  18. 18.
    Ishihara T, Matsuda H, Takita Y (1994) J Am Chem Soc 116:3801CrossRefGoogle Scholar
  19. 19.
    Huang PN, Petric A (1996) J Electrochem Soc 143:1644CrossRefGoogle Scholar
  20. 20.
    Djurado E, Labeau M (1998) J Eur Ceram Soc 18:1397CrossRefGoogle Scholar
  21. 21.
    Stevenson JW, Armstrong TR, Pederson LR, Li J, Lewinsohn CA, Baskaran S (1998) Solid State Ionics 113:571CrossRefGoogle Scholar
  22. 22.
    Yamaji K, Horita T, Ishikawa M, Sakai N, Yokokawa H (1999) Solid State Ionics 121:217CrossRefGoogle Scholar
  23. 23.
    Huang PN, Horky A, Petric A (1999) J Am Ceram Soc 82:2402CrossRefGoogle Scholar
  24. 24.
    Kim KN, Kim BK, Son JW et al (2006) Solid State Ionics 177:2155CrossRefGoogle Scholar
  25. 25.
    Lin YB, Barnett SA (2006) Electrochem Solid State Lett 9:A285CrossRefGoogle Scholar
  26. 26.
    Bi Z, Dong Y, Cheng M, Yi B (2006) J Power Sources 161:34CrossRefGoogle Scholar
  27. 27.
    Inaba H, Tagawa H (1996) Solid State Ionics 83:1CrossRefGoogle Scholar
  28. 28.
    Inaba H, Nakajima T, Tagawa H (1998) Solid State Ionics 106:263CrossRefGoogle Scholar
  29. 29.
    Rambabu B, Ghosh S, Jena H (2006) J Mater Sci 41:7530. doi: 10.1007/s10853-006-0837-6 CrossRefGoogle Scholar
  30. 30.
    Esposito V, Zunic M, Traversa E (2009) Solid State Ionics 180:1069CrossRefGoogle Scholar
  31. 31.
    Kleinlogel C, Gauckler LJ (2000) Solid State Ionics 135:567CrossRefGoogle Scholar
  32. 32.
    Jud E, Gauckler LJ (2005) J Electroceram 14:247CrossRefGoogle Scholar
  33. 33.
    Kleinlogel C, Gauckler LJ (2001) Adv Mater 13:1081CrossRefGoogle Scholar
  34. 34.
    Lewis GS (2002) PhD Thesis, University of LondonGoogle Scholar
  35. 35.
    Jud E, Zhang Z, Sigle W, Gauckler LJ (2006) J Electroceram 16:191CrossRefGoogle Scholar
  36. 36.
    Lewis GS, Atkinson A, Steele BCH, Drennan J (2002) Solid State Ionics 152:567CrossRefGoogle Scholar
  37. 37.
    Fagg DP, Abrantes JCC, Perez-Coll D, Nunez P, Kharton VV, Frade JR (2003) Electrochim Acta 48:1023CrossRefGoogle Scholar
  38. 38.
    Zhang ZL, Wilfried SA, Ruhle M, Jud E, Gauckler LJ (2007) Acta Mater 55:2907CrossRefGoogle Scholar
  39. 39.
    Jud E, Huwiler CB, Gauckler LJ (2005) J Am Ceram Soc 88:3013CrossRefGoogle Scholar
  40. 40.
    Kleinlogel CM, Gauckler LJ (2000) J Electroceram 5:231CrossRefGoogle Scholar
  41. 41.
    Nicholas JD, De Jonghe LC (2007) Solid State Ionics 178:1187CrossRefGoogle Scholar
  42. 42.
    Kim DJ (1989) J Am Ceram Soc 72:1415CrossRefGoogle Scholar
  43. 43.
    Kleinlogel C, Gauckler LJ (1999) Electrochem Soc Proc 99-19:225Google Scholar
  44. 44.
    Avila-Paredes HJ, Kim S (2006) Solid State Ionics 177:3075CrossRefGoogle Scholar
  45. 45.
    Zajac W, Suescun L, Swierczek K, Molenda J (2009) J Power Sources 194:2CrossRefGoogle Scholar
  46. 46.
    Fagg DP, Kharton VV, Frade JR (2002) J Electroceram 9:199CrossRefGoogle Scholar
  47. 47.
    Ou DR, Mori T, Ye F et al (2009) J Electrochem Soc 156:B825CrossRefGoogle Scholar
  48. 48.
    Zhang TS, Kong LB, Zeng ZQ et al (2003) J Solid State Electrochem 7:348Google Scholar
  49. 49.
    Pikalova EY, Demina AN, Demin AK, Murashkina AA, Sopernikov VE, Esina NO (2007) Inorg Mater 43:735CrossRefGoogle Scholar
  50. 50.
    Dong Q, ZH Du, Zhang TS, Lu J, Song XC, Ma J (2009) Int J Hydrogen Energ 34:7903CrossRefGoogle Scholar
  51. 51.
    Zhang TS, Ma J, Kong LB, Chan SH, Hing P, Kilner JA (2004) Solid State Ionics 167:203CrossRefGoogle Scholar
  52. 52.
    Kondakindi RR, Karan K (2009) Mater Chem Phys 115:728CrossRefGoogle Scholar
  53. 53.
    Zhang TS, Ma J, Leng YJ, Chan SH, Hing P, Kilner JA (2004) Solid State Ionics 168:187CrossRefGoogle Scholar
  54. 54.
    Figueiredo FM, Marques FMB, Frade JR (1998) Solid State Ionics 111:273CrossRefGoogle Scholar
  55. 55.
    Petrov AN, Cherepanov VA, Zuev AY (2006) J Solid State Electrochem 10:517CrossRefGoogle Scholar
  56. 56.
    Zuev AY, Petrov AN, Vylkov AI, Tsvetkov DS (2007) J Mater Sci 42:1901. doi: 10.1007/s10853-006-0345-8 CrossRefGoogle Scholar
  57. 57.
    Seppaenen KM, Taskinen P (1980) Scand J Metallurgy 9:3Google Scholar
  58. 58.
    Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H (1989) J Solid State Chem 80:102CrossRefGoogle Scholar
  59. 59.
    Petrov AN, Cherepanov VA, Zuev AY (1987) Russ J Phys Chem A 61:630Google Scholar
  60. 60.
    Petrov AN, Zuev AY, Vylkov AI, Tsvetkov DS (2007) J Mater Sci 42:1909. doi: 10.1007/s10853-006-0346-7 CrossRefGoogle Scholar
  61. 61.
    Zuev AY, Vylkov AI, Petrov AN, Tsvetkov DS (2008) Solid State Ionics 179:1876CrossRefGoogle Scholar
  62. 62.
    Senarfs-Rodriguez MA, Goodenough JB (1995) J Solid State Chem 116:224CrossRefGoogle Scholar
  63. 63.
    Thorntonf G, Owen IW, Diakun GP (1991) J Phys Conden Matter 3:417CrossRefGoogle Scholar
  64. 64.
    Nakamura T, Misono M, Yoneda Y (1981) Chem Lett 10Google Scholar
  65. 65.
    Gavrilova LY, Cherepanov VA (1999) In: Singhal SC, Dokiya M (eds) Solid oxide fuel cells VI, PV 99-17. The Electrochemical Society Proceedings Series. The Electrochemical Society, Pennington, p 404Google Scholar
  66. 66.
    Cherepanov VA, Gavrilova LY, Petrov AN, Zuev AY (2002) Z Anorg Allge Chem 628:2140CrossRefGoogle Scholar
  67. 67.
    Teraoka Y, Yoshimatsu M, Yamazoe N, Seiyama T (1984) Chem Lett 13:893CrossRefGoogle Scholar
  68. 68.
    Søgaard M, Vang P, Mogensen M, Willy F, Skou E (2006) Structure 177:3285Google Scholar
  69. 69.
    Rudberg EA, Wiik K, Svensson AM, Nisancioglu K (2005) Solid State Electrochem 311Google Scholar
  70. 70.
    Bouwmeester HJM (2003) Catalysis Today 82:141CrossRefGoogle Scholar
  71. 71.
    Matsuura T, Tabuchi J, Mizusaki J, Yamauchi S, Fueki K (1988) J Phys Chem Solids 49:1403CrossRefGoogle Scholar
  72. 72.
    Lankhorst MHR, Bouwmeester HJM, Verweij H (1996) Phys Rev Lett 77:2989CrossRefGoogle Scholar
  73. 73.
    Lankhorst MHR, Bouwmeester HJM, Verweij H (1997) Solid State Ionics 96:21CrossRefGoogle Scholar
  74. 74.
    Lankhorst MHR, Bouwmeester HJM, Verweij H (1997) J Solid State Chem 133:555CrossRefGoogle Scholar
  75. 75.
    Petrov AN, Kononchuk OF, Andreev AV, Cherepanov VA, Kofstad P (1995) Solid State Ionics 80:189CrossRefGoogle Scholar
  76. 76.
    Patrakeev MV, Leonidov IA, Mitberg EB et al (1999) Ionics 5:444CrossRefGoogle Scholar
  77. 77.
    Kozhevnikov VL, Leonidov IA, Mitberg EB, Patrakeev MV, Petrov AN, Poeppelmeier KR (2003) J Solid State Chem 172:296CrossRefGoogle Scholar
  78. 78.
    Sehlin SR, Anderson HU, Sparlin DM (1995) Phys Rev B 52:11681CrossRefGoogle Scholar
  79. 79.
    van Doorn RE, Fullarton IC, de Souza RA, Kilner JA, Bouwmeester HJM, Burggraaf AJ (1997) Solid State Ionics 96:1CrossRefGoogle Scholar
  80. 80.
    Berenov AV, Atkinson A, Kilner JA, Bucher E, Sitte W (2010) Solid State Ionics 181:819CrossRefGoogle Scholar
  81. 81.
    Bucher E, Sitte W, Rom I, Papst I, Grogger W, Hofer F (2002) Solid State Ionics 152–153:417CrossRefGoogle Scholar
  82. 82.
    Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Solid State Ionics 22:241CrossRefGoogle Scholar
  83. 83.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:259CrossRefGoogle Scholar
  84. 84.
    Maguirea E, Gharbage B, Marques FMB, Labrincha JA (2000) Solid State Ionics 127Google Scholar
  85. 85.
    Guntuka S, Banerjee S, Farooq S, Srinivasan MP (2008) Ind Eng Chem Res 47:154CrossRefGoogle Scholar
  86. 86.
    Kharton VV, Kovalevsky AV, Tikhonovich VN, Naumovich EN, Viskup AP (1998) Solid State Ionics 110:53CrossRefGoogle Scholar
  87. 87.
    Yaremchenko AA, Kharton VV, Viskup AP, Naumovich EN, Tikhonovich VN, Lapchuk NM (1999) Solid State Ionics 120:65CrossRefGoogle Scholar
  88. 88.
    Sukpirom N, Iamsaard S, Charojrochkul S, Yeyongchaiwat J (2011) J Mater Sci 46:6500. doi: 10.1007/s10853-011-5596-3 CrossRefGoogle Scholar
  89. 89.
    Hrovat M, Katsarakis N, Reichmann K, Bernik S, Kuscer D, Holc J (1996) Solid State Ionics 83:99CrossRefGoogle Scholar
  90. 90.
    Chen CH, Kruidhof H, Bouwmeester HJM, Burggraaf AJ (1997) J Appl Electrochem 27:71CrossRefGoogle Scholar
  91. 91.
    Kharton VV, Viskup AP, Bochkov DM, Naumovich EN, Reut OP (1998) Solid State Ionics 110:61CrossRefGoogle Scholar
  92. 92.
    Junichiro M (1992) Solid State Ionics 52:79CrossRefGoogle Scholar
  93. 93.
    Inoue T, Kamimae J-i, Ueda M, Eguchi K, Arai H (1993) J Mater Chem 3:751CrossRefGoogle Scholar
  94. 94.
    Hjalmarsson P, Søgaard M, Hagen A, Mogensen M (2008) Solid State Ionics 179:636CrossRefGoogle Scholar
  95. 95.
    Huang K, Lee HY, Goodenough JB (1998) J Electrochem Soc 145:3220. doi: 10.1149/1.1838789 CrossRefGoogle Scholar
  96. 96.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:273CrossRefGoogle Scholar
  97. 97.
    Tai LW, Nasrallah MM, Anderson HU (1995) J Solid State Chem 118:117CrossRefGoogle Scholar
  98. 98.
    Skinner SJ, Kilner JA (2003) Materials Today 6:30CrossRefGoogle Scholar
  99. 99.
    Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) J Electrochem Soc 143:2722CrossRefGoogle Scholar
  100. 100.
    Petric A, Huang P, Tietz F (2000) Solid State Ionics 135:719CrossRefGoogle Scholar
  101. 101.
    Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mater Res Bull 23:51CrossRefGoogle Scholar
  102. 102.
    Esquirol A, Kilner J, Brandon N (2004) Solid State Ionics 175:63CrossRefGoogle Scholar
  103. 103.
    Wang S, Kato T, Nagata S et al (2002) Solid State Ionics 146:203CrossRefGoogle Scholar
  104. 104.
    Wang S, Katsuki M, Dokiya M, Hashimoto T (2003) Solid State Ionics 159:71CrossRefGoogle Scholar
  105. 105.
    Deng ZQ, Yang WS, Liu W, Chen CS (2006) J Solid State Chem 179:362CrossRefGoogle Scholar
  106. 106.
    Takeda Y, Kanno R, Takada T, Yamamoto O, Takano M, Bando Y (1986) Z Anorg Allge Chem 541:259CrossRefGoogle Scholar
  107. 107.
    de la Calle C, Aguadero A, Alonso JA, Fernandez-Diaz MT (2008) Solid State Sci 10:1924CrossRefGoogle Scholar
  108. 108.
    Takeda T, Yamaguchi Y, Watanabe H, Tomiyoshi S, Yamamoto H (1969) J Phys Soc Jpn 26:1320CrossRefGoogle Scholar
  109. 109.
    Grenier JC, Ghodbane S, Demazeau G, Pouchard M, Hagenmuller P (1979) Mater Res Bull 14:831CrossRefGoogle Scholar
  110. 110.
    Battle PD, Gibb TC, Steel AT (1987) J Chem Soc-Dalton Trans 2359Google Scholar
  111. 111.
    Battle PD, Gibb TC (1987) J Chem Soc-Dalton Trans 667Google Scholar
  112. 112.
    Battle PD, Gibb TC, Steel AT (1988) J Chem Soc-Dalton Trans 83Google Scholar
  113. 113.
    Harrison WTA, Hegwood SL, Jacobson AJ (1995) J Chem Soc-Chem Commun 1953Google Scholar
  114. 114.
    Nagai T, Ito W, Sakon T (2007) Solid State Ionics 177:3433CrossRefGoogle Scholar
  115. 115.
    Zeng P, Shao Z, Liu S, Xu ZP (2009) Separ Purif Techn 67:304CrossRefGoogle Scholar
  116. 116.
    Zhou W, Jin W, Zhu Z, Shao Z (2010) Int J Hydrogen Energ 35:1356CrossRefGoogle Scholar
  117. 117.
    Aguadero A, de la Calle C, Alonso JA, Escudero MJ, Fernandez-Diaz MT, Daza L (2007) Chem Mater 19:6437CrossRefGoogle Scholar
  118. 118.
    Aguadero A, Perez-Coll D, de la Calle C, Alonso JA, Escudero MJ, Daza L (2009) J Power Sources 192:132CrossRefGoogle Scholar
  119. 119.
    Aguadero A, Antonio Alonso J, Perez-Coll D, de la Calle C, Fernandez-Diaz MT, Goodenough JB (2010) Chem Mater 22:789CrossRefGoogle Scholar
  120. 120.
    Shen Y, Wang F, Ma X, He T (2011) J Power Sources 196:7420CrossRefGoogle Scholar
  121. 121.
    Zeng PY, Ran R, Shao ZP, Yu H, Liu SM (2009) Braz J Chem Eng 26:563CrossRefGoogle Scholar
  122. 122.
    Zeng P, Ran R, Chen Z et al (2008) J Alloys Cmpnds 455:465CrossRefGoogle Scholar
  123. 123.
    Chen X, Huang L, Wei Y, Wang H (2011) J Membr Sci 368:159CrossRefGoogle Scholar
  124. 124.
    Teraoka Y, Zhang HM, Furukawa S, Yamazoe N (1985) Chem Lett 1743Google Scholar
  125. 125.
    Fukunaga H, Koyama M, Takahashi N, Wen C, Yamada K (2000) Solid State Ionics 132:279CrossRefGoogle Scholar
  126. 126.
    Ishihara T, Honda M, Shibayama T, Minami H, Nishiguchi H, Takita Y (1998) J Electrochem Soc 145:3177CrossRefGoogle Scholar
  127. 127.
    Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX (2000) J Membr Sci 172:177CrossRefGoogle Scholar
  128. 128.
    Shao ZP, Haile SM (2004) Nature 431:170CrossRefGoogle Scholar
  129. 129.
    Pena-Martinez J, Marrero-Lopez D, Perez-Coll D, Ruiz-Morales JC, Nunez P (2007) Electrochim Acta 52:2950CrossRefGoogle Scholar
  130. 130.
    Wei B, Lu Z, Huang X et al (2006) J Eur Ceram Soc 26:2827CrossRefGoogle Scholar
  131. 131.
    Svarcova S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T (2008) Solid State Ionics 178:1787CrossRefGoogle Scholar
  132. 132.
    Arnold M, Gesing TM, Martynczuk J, Feldhoff A (2008) Chem Mater 20:5851CrossRefGoogle Scholar
  133. 133.
    Yang Z, Martynczuk J, Efimov K et al (2011) Chem Mater 23:3169CrossRefGoogle Scholar
  134. 134.
    Yan A, Cheng M, Dong YL et al (2006) Appl Catal B 66:64CrossRefGoogle Scholar
  135. 135.
    Mizusaki J, Sasamoto T, Cannon WR, Bowen HK (1982) J Am Ceram Soc 65:363CrossRefGoogle Scholar
  136. 136.
    Mizusaki J, Sasamoto T, Cannon WR, Bowen HK (1983) J Am Ceram Soc 66:247CrossRefGoogle Scholar
  137. 137.
    Ralph JM, Rossignol C, Kumar R (2003) J Electrochem Soc 150:A1518CrossRefGoogle Scholar
  138. 138.
    Kharton VV, Kovalevsk AV, Patrakeev MV et al (2008) Chem Mater 20:6457CrossRefGoogle Scholar
  139. 139.
    Vidal K, Rodriguez-Martinez LM, Ortega-San-Martin L et al (2009) J Power Sources 192:175CrossRefGoogle Scholar
  140. 140.
    Kuscer D, Hanzel D, Holc J, Hrovat M, Kolar D (2001) J Am Ceram Soc 84:1148CrossRefGoogle Scholar
  141. 141.
    Kharton VV, Yaremchenko AA, Patrakeev MV, Naumovich EN, Marques FMB (2003) J Eur Ceram Soc 23:1417CrossRefGoogle Scholar
  142. 142.
    Juste E, Julian A, Etchegoyen G et al (2008) J Membr Sci 319:185CrossRefGoogle Scholar
  143. 143.
    Chiba R, Yoshimura F, Sakurai Y (1999) Solid State Ionics 124:281CrossRefGoogle Scholar
  144. 144.
    Kharton VV, Viskup AP, Naumovich EN, Tikhonovich VN (1999) Mater Res Bull 34:1311CrossRefGoogle Scholar
  145. 145.
    Kammer K, Mikkelsen L, Bilde-Sorensen JB (2006) J Solid State Electrochem 10:934CrossRefGoogle Scholar
  146. 146.
    Tsipis EV, Kiselev EA, Kolotygin VA, Waerenborgh JC, Cherepanov VA, Kharton VV (2008) Solid State Ionics 179:2170CrossRefGoogle Scholar
  147. 147.
    Takahashi S, Nishimoto S, Matsuda M, Miyake M (2010) J Am Ceram Soc 93:2329CrossRefGoogle Scholar
  148. 148.
    Amow G, Skinner SJ (2006) J Solid State Electrochem 10:538CrossRefGoogle Scholar
  149. 149.
    Amow G, Davidson IJ, Skinner SJ (2006) Solid State Ionics 177:1205CrossRefGoogle Scholar
  150. 150.
    Greenblatt M, Zhang Z, Whangbo MH (1997) Synthetic Met 85:1451CrossRefGoogle Scholar
  151. 151.
    Greenblatt M (1997) Solid State Mater Sci 174Google Scholar
  152. 152.
    Kobayashi Y, Taniguchi S, Kasai M, Sato M, Nishioka T, Kontani M (1996) J Phys Soc Jpn 65:3978CrossRefGoogle Scholar
  153. 153.
    Zhang Z, Greenblatt M (1995) J Solid State Chem 117:236CrossRefGoogle Scholar
  154. 154.
    Zhang Z, Greenblatt M, Goodenough JB (1994) J Solid State Chem 108:402CrossRefGoogle Scholar
  155. 155.
    Greenblatt M, Zhang Z (1994) Abstr Pap Am Chem S 208:585Google Scholar
  156. 156.
    Perez-Coll D, Aguadero A, Escudero MJ, Daza L (2009) J Power Sources 192:2CrossRefGoogle Scholar
  157. 157.
    Nedilko SA, Kulichenko VA, Dziazko AG, Zenkovich EG (2004) J Alloy Compd 367:251CrossRefGoogle Scholar
  158. 158.
    Carvalho MD, Wattiaux A, Bassat JM et al (2003) J Solid State Electrochem 7:700CrossRefGoogle Scholar
  159. 159.
    Carvalho MD, Cruz MM, Wattiaux A, Bassat JM, Costa FMA, Godinho M (2000) J Appl Phys 88:544CrossRefGoogle Scholar
  160. 160.
    Bassat JM, Odier P, Villesuzanne A, Marin C, Pouchard M (2004) Solid State Ionics 167:341CrossRefGoogle Scholar
  161. 161.
    Jorgensen JD, Dabrowski B, Pei S, Richards DR, Hinks DG (1989) Phys Rev B 40:2187CrossRefGoogle Scholar
  162. 162.
    Bassat JM, Gervais F, Odier P, Loup JP (1989) Mater Sci Eng B 3:507CrossRefGoogle Scholar
  163. 163.
    Sayagués MJ, Vallet-Regí M, Hutchison JL, González-Calbet JM (1996) J Solid State Chem 125:133CrossRefGoogle Scholar
  164. 164.
    Boehm E, Bassat JM, Dordor P, Mauvy F, Grenier JC, Stevens P (2005) Solid State Ionics 176:2717CrossRefGoogle Scholar
  165. 165.
    Munnings CN, Skinner SJ, Amow G, Whitfield PS, Davidson IJ (2005) Solid State Ionics 176:1895CrossRefGoogle Scholar
  166. 166.
    Opila EJ, Tuller HL, Wuensch BJ, Maier J (1993) J Am Ceram Soc 76:2363CrossRefGoogle Scholar
  167. 167.
    Burriel M, Garcia G, Santiso J, Kilner JA, Chater RJ, Skinner SJ (2008) J Mater Chem 18:416CrossRefGoogle Scholar
  168. 168.
    Minervini L, Grimes RW, Kilner JA, Sickafus KE (2000) J Mater Chem 10:2349CrossRefGoogle Scholar
  169. 169.
    Frayret C, Villesuzanne A, Pouchard M (2005) Chem Mater 17:6538CrossRefGoogle Scholar
  170. 170.
    Chroneos A, Parfitt D, Kilner JA, Grimes RW (2010) J Mater Chem 20:266CrossRefGoogle Scholar
  171. 171.
    Tsipis EV, Kharton VV (2007) J Solid State Electrochem 12:1039CrossRefGoogle Scholar
  172. 172.
    Sun C, Hui R, Roller J (2010) J Solid State Electrochem 14:1125CrossRefGoogle Scholar
  173. 173.
    Skinner S, Munnings CN, Amow G, Whitfield P, Davison I (2003) In: Singhal SC, Dokiya M (eds) SOFC VIII. Electrochemical Socciety Series, Pennington, NJ, USA, pp 552Google Scholar
  174. 174.
    Kharton VV, Yaremchenko AA, Tsipis EV, Frade JR (2003) In: Singhal SC, Dokiya M (eds) SOFC VIII. Electrochemical Society Series, Pennington, NJ, USA, pp 561Google Scholar
  175. 175.
    Sayers R, Liu J, Rustumji B, Skinner SJ (2008) Fuel Cells 8:338CrossRefGoogle Scholar
  176. 176.
    Bae JM, Steele BCH (1999) J Electroceram 3:37CrossRefGoogle Scholar
  177. 177.
    Jaiswal A, Wachsman ED (2005) J Electrochem Soc 152:A787CrossRefGoogle Scholar
  178. 178.
    Zhong Z (2006) Electrochem Solid-State Lett 9:A215CrossRefGoogle Scholar
  179. 179.
    Takeda T, Kanno R, Kawamoto Y, Takeda Y, Yamamoto O (2000) J Electrochem Soc 147:1730CrossRefGoogle Scholar
  180. 180.
    Doshi R, Richards VL, Carter JD, Wang X, Krumpelt M (1999) J Electrochem Soc 146:1273CrossRefGoogle Scholar
  181. 181.
    Díaz-Guillén JA, Díaz-Guillén MR, Padmasree KP, Fuentes AF, Santamaría J, León C (2008) Solid State Ionics 179:2160CrossRefGoogle Scholar
  182. 182.
    Martínez-Coronado R, Aguadero A, de la Calle C, Fernández MT, Alonso JA (2011) J Power Sources 196:4181CrossRefGoogle Scholar
  183. 183.
    Señarís-Rodríguez MA, Goodenough JB (1995) J Solid State Chem 118:323CrossRefGoogle Scholar
  184. 184.
    Kim JH, Manthiram A (2010) Chem Mater 22:822CrossRefGoogle Scholar
  185. 185.
    Kim JH, Kim YN, Cho SM, Wang H, Manthiram A (2010) Electrochim Acta 55:5312CrossRefGoogle Scholar
  186. 186.
    Kim J-H, Kim YN, Bi Z, Manthiram A, Paranthaman MP, Huq A (2011) Electrochim Acta 56:5740CrossRefGoogle Scholar
  187. 187.
    Kim YN, Kim J-H, Manthiram A (2011) Int J Hydrogen EnergGoogle Scholar
  188. 188.
    Vert VB, Serra JM, Jordá JL (2010) Electrochem Commun 12:278CrossRefGoogle Scholar
  189. 189.
    Vannier RN, Skinner SJ, Chater RJ, Kilner JA, Mairesse G (2003) Solid State Ionics 160:85CrossRefGoogle Scholar
  190. 190.
    Xia C, Liu M (2002) Adv Mater 14:521CrossRefGoogle Scholar
  191. 191.
    Yang T, Li F, Xia D (2010) J Power Sources 195:2514CrossRefGoogle Scholar
  192. 192.
    Xia C (2003) Appl Phys Lett 82:901CrossRefGoogle Scholar
  193. 193.
    Camaratta M, Wachsman E (2007) Solid State Ionics 178:1242CrossRefGoogle Scholar
  194. 194.
    Camaratta M, Wachsman E (2007) Solid State Ionics 178:1411CrossRefGoogle Scholar
  195. 195.
    Li J, Wang S, Liu R, Wang Z, Qian JQ (2008) Solid State Ionics 179:1597CrossRefGoogle Scholar
  196. 196.
    Ehora G, Daviero-Minaud S, Colmont M, Andre G, Mentre O (2007) Chem Mater 19:2180CrossRefGoogle Scholar
  197. 197.
    Rolle A, Preux N, Ehora G, Mentré O, Daviero-Minaud S (2011) Solid State Ionics 184:31CrossRefGoogle Scholar
  198. 198.
    Wang WG, Mogensen M (2005) Solid State Ionics 176:457CrossRefGoogle Scholar
  199. 199.
    Liu B, Gu Y, Kong L, Zhang Y (2008) J Power Sources 185:946CrossRefGoogle Scholar
  200. 200.
    Liu H, Zhu X, Cheng M, Cong Y, Yang W (2011) Chem Commun 47:2378CrossRefGoogle Scholar
  201. 201.
    Lessing PA (2007) J Mater Sci 42:3465. doi: 10.1007/s10853-006-0409-9 CrossRefGoogle Scholar
  202. 202.
    Ni M, Leung MKH, Leung DYC (2008) Int J Hydrogen Energ 33:2337CrossRefGoogle Scholar
  203. 203.
    Herring JS, O’Brien JE, Stoots CM, Hawkes GL, Hartvigsen JJ, Shahnam M (2007) Int J Hydrogen Energ 32:440CrossRefGoogle Scholar
  204. 204.
    Yang X, Irvine JTS (2008) J Mater Chem 18:2349CrossRefGoogle Scholar
  205. 205.
    Eguchi K, Hatagishi T, Arai H (1996) Solid State Ionics 86–8:1245CrossRefGoogle Scholar
  206. 206.
    Marina OA, Pederson LR, Williams MC et al (2007) J Electrochem Soci 154:B452CrossRefGoogle Scholar
  207. 207.
    Osada N, Uchida H, Watanabe M (2006) J Electrochem Soc 153:A816CrossRefGoogle Scholar
  208. 208.
    Brisse A, Schefold J, Zahid M (2008) Int J Hydrogen Energ 33:5375CrossRefGoogle Scholar
  209. 209.
    Laguna-Bercero MA, Skinner SJ, Kilner JA (2009) J Power Sources 192:126CrossRefGoogle Scholar
  210. 210.
    Jacobson AJ (2010) Chem Mater 22:660CrossRefGoogle Scholar
  211. 211.
    Kuharuangrong S (2004) Ceram Intern 30:273CrossRefGoogle Scholar
  212. 212.
    Boehm E, Bassat JM, Steil MC, Dordor P, Mauvy F, Grenier JC (2003) Solid State Sciences 5:973CrossRefGoogle Scholar
  213. 213.
    Sayers R (2010) PhD Thesis, Imperial College London, LondonGoogle Scholar
  214. 214.
    Wang WS, Huang YY, Jung SW, Vohs JM, Gorte RJ (2006) J Electrochem Soc 153:A2066CrossRefGoogle Scholar
  215. 215.
    Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P (2000) Acta Mater 48:4709CrossRefGoogle Scholar
  216. 216.
    Laguna-Bercero MA, Kilner JA, Skinner SJ (2010) Chem Mater 22:1134CrossRefGoogle Scholar
  217. 217.
    Yu B, Zhang W, Xu J, Chen J (2010) Int J Hydrogen Energ 35:2829CrossRefGoogle Scholar
  218. 218.
    Munnings CN, Skinner SJ, Amow G, Whitfield PS, Davidson IJ (2005) Solid State Ionics 176:1895CrossRefGoogle Scholar
  219. 219.
    Aguadero A, Alonso JA, Fernandez-Diaz MT, Escudero MJ, Daza L (2007) J Power Sources 169:17CrossRefGoogle Scholar
  220. 220.
    Kao CF, Jeng CL (2000) Ceram Intern 26:237CrossRefGoogle Scholar
  221. 221.
    Rieu M, Sayers R, Laguna-Bercero MA, Skinner SJ, Lenormand P, Ansart F (2010) J Electrochem Soc 157:B477CrossRefGoogle Scholar
  222. 222.
    Sayers R, Rieu M, Lenormand F, Kilner J, Skinner S (2011) Solid State Ionics 192:531CrossRefGoogle Scholar
  223. 223.
    Perez-Coll D, Aguadero A, Escudero MJ, Daza L (2009) J Power Sources 192:2CrossRefGoogle Scholar
  224. 224.
    Aguadero A, Escudero MJ, Perez M, Alonso JA, Daza L (2007) J.Fuel Cell Sci Techn 4:294CrossRefGoogle Scholar
  225. 225.
    Aguadero A, Perez M, Alonso JA, Daza L (2005) J Power Sources 151:52CrossRefGoogle Scholar
  226. 226.
    Adler SB (2004) Chem Rev 104:4791CrossRefGoogle Scholar
  227. 227.
    Litzelman SJ, Hertz JL, Jung W, Tuller HL (2008) Fuel Cells 8:294CrossRefGoogle Scholar
  228. 228.
    Pederson LR, Singh P, Zhou XD (2006) Vacuum 80:1066CrossRefGoogle Scholar
  229. 229.
    Santiso J, Burriel M (2010) J Solid State Electrochem 15:985CrossRefGoogle Scholar
  230. 230.
    Baumann FS, Fleig J, Cristiani G, Stuhlhofer B, Habermeier HU, Maier J (2007) J Electrochem Soc 154:B931CrossRefGoogle Scholar
  231. 231.
    Kim G, Wang S, Jacobson AJ, Chen CL (2006) Solid State Ionics 177:1461CrossRefGoogle Scholar
  232. 232.
    Kim GT, Wang SY, Jacobson AJ, Yuan Z, Chen CL (2007) J Mater Chem 17:1316CrossRefGoogle Scholar
  233. 233.
    Garcia G, Burriel M, Bonanos N, Santiso J (2008) J Electrochem Soc 155:P28CrossRefGoogle Scholar
  234. 234.
    Boehm E, Bassat JM, Steil MC, Dordor P, Mauvy F, Grenier JC (2003) Solid State Sci 5:973CrossRefGoogle Scholar
  235. 235.
    Dembinski K, Bassat JM, Coutures JP, Odier P (1987) J Mater Sci Lett 6:1365CrossRefGoogle Scholar
  236. 236.
    Burriel M, Santiso J, Rossell MD, Van Tendeloo G, Figueras A, Garcia G (2008) J Phys Chem C 112:10982CrossRefGoogle Scholar
  237. 237.
    Raju AR, Aiyer HN, Rao CNR (1995) Chem Mater 7:225CrossRefGoogle Scholar
  238. 238.
    Burriel M, Garcia G, Rossell MD, Figueras A, Van Tendeloo G, Santiso J (2007) Chem Mater 19:4056CrossRefGoogle Scholar
  239. 239.
    Sase M, Hermes F, Yashiro K et al (2008) J Electrochem Soc 155:B793CrossRefGoogle Scholar
  240. 240.
    Crumlin EJ, Mutoro E, Ahn S-J, et al (2010) J Phys Chem Lett 3149Google Scholar
  241. 241.
    Yamada A, Suzuki Y, Saka K et al (2008) Adv Mater 20:4124CrossRefGoogle Scholar
  242. 242.
    Dragan MA (2006) PhD Thesis, RWTH AachenGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ainara Aguadero
    • 1
    • 2
  • Lydia Fawcett
    • 1
  • Samuel Taub
    • 1
  • Russell Woolley
    • 1
  • Kuan-Ting Wu
    • 1
  • Ning Xu
    • 1
  • John A. Kilner
    • 1
  • Stephen J. Skinner
    • 1
  1. 1.Department of MaterialsImperial College LondonLondonUnited Kingdom
  2. 2.Instituto de Ciencia de Materiales de MadridC.S.I.CCantoblanco MadridSpain

Personalised recommendations