Journal of Materials Science

, Volume 47, Issue 8, pp 3602–3606 | Cite as

Enhancing the anti-cracking performance of perfluorosulfonic acid membranes for implantable biosensors through supercritical CO2 treatment

  • Fei Ai
  • Wang Zhang Yuan
  • Quan Wang
  • Hong Li
  • Yongming Zhang
  • Supeng Pei


Due to the outstanding stability, biocompatibility, and permeability, perfluorosulfonic acid (PFSA) membranes can be used to protect biosensors in biological environment. However, mineralization induced cracking hinders their in vivo applications for long duration. Various methods including anneal, preincubation in FeCl3 solution, and layer-by-layer self assembly were attempted to improve their anti-cracking performance, but only met with limited success. In this study, a new method, namely supercritical carbon dioxide (Sc-CO2) treatment was developed to enhance the anti-cracking performance of PFSA membranes. After being incubated in cell culture medium for 12 weeks, while the pristine membranes undergone intense cracking, their Sc-CO2 treated counterparts kept almost intact. Small-angle X-ray scattering and wide-angle X-ray diffraction results revealed the more perfect structure in the treated membranes. Meanwhile, the crystalline structure of pristine membranes was obviously destroyed after cultivation, whereas the treated membranes exhibited little change. The increased crystallinity and reduced ionic clusters size of the Sc-CO2 treated membranes are responsible to the greatly enhanced anti-cracking performance. In addition, such improvement paves the way for the applications of PFSA membranes in implantable biosensors.


Simulated Body Fluid Butylene Succinate Calcium Phosphate Deposition Perfluorosulfonic Acid PFSA Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the “12th 5-year” National Key Technologies R&D Program of China (2011BAE08B00), the National Science Foundation of China (21104044), and the Shanghai Leading Academic Discipline Project (No. B202). The authors thank Shanghai Synchrotron Radiation Facility, SSRF, for the SAXS and XRD tests.


  1. 1.
    Turner RFB, Harrison DJ, Rojotte RV (1991) Biomaterials 12:361CrossRefGoogle Scholar
  2. 2.
    Moussy F, Harrison DJ, O’Brien DW, Rajotte RV (1993) Anal Chem 65:2072CrossRefGoogle Scholar
  3. 3.
    Moussy F, Harrison DJ (1994) Anal Chem 66:674CrossRefGoogle Scholar
  4. 4.
    Mǎdǎras MB, Buck RP (1996) Anal Chem 68:3832CrossRefGoogle Scholar
  5. 5.
    Moussy F, Jakeway S, Harrlson DJ, Rajotte RV (1994) Anal Chem 66:3882CrossRefGoogle Scholar
  6. 6.
    Haworth B, Gilbert M, Myers DJB (2005) J Mater Sci 40:955. doi: 10.1007/s10853-005-6514-3 CrossRefGoogle Scholar
  7. 7.
    Wisniewski N, Reichert M (2000) Colloid Surf B 18:197CrossRefGoogle Scholar
  8. 8.
    Mercado RC, Moussy F (1998) Biosens Bioelectron 13:133CrossRefGoogle Scholar
  9. 9.
    Valdes TI, Moussy F (1999) Biosens Bioelectron 14:579CrossRefGoogle Scholar
  10. 10.
    Galeska I, Chattopadhyay D, Moussy F, Papadimitrakopoulos F (2000) Biomacromolecules 1:202CrossRefGoogle Scholar
  11. 11.
    Galeska I, Chattopadhyay D, Papadimitrakopoulos F (2002) J Macromol Sci A 39:1207CrossRefGoogle Scholar
  12. 12.
    Su LJ, Li L, Li H, Zhang YM, Yu W, Zhou CX (2009) J Membr Sci 335:118CrossRefGoogle Scholar
  13. 13.
    Luan YH, Zhang YM, Zhang H, Li L, Li H, Liu YG (2008) J Appl Polym Sci 107:396CrossRefGoogle Scholar
  14. 14.
    Luan YH, Zhang H, Zhang YM, Li L, Li H, Liu YG (2008) J Membr Sci 319:91CrossRefGoogle Scholar
  15. 15.
    Shang FJ, Li L, Zhang YM, Li H (2009) J Mater Sci 44:4383. doi: 10.1007/s10853-009-3658-6 CrossRefGoogle Scholar
  16. 16.
    Hensley JE, Way JD, Dec SF, Abney KD (2007) J Membr Sci 298:190CrossRefGoogle Scholar
  17. 17.
    Fujimura M, Hashimoto T, Kawai H (1981) Macromolecules 14:1309CrossRefGoogle Scholar
  18. 18.
    Fujimura M, Hashimoto T, Kawai H (1982) Macromolecules 15:136CrossRefGoogle Scholar
  19. 19.
    Wang F, Li MS, Lu YP, Ge SS (2005) J Mater Sci 40:2073. doi: 10.1007/s10853-005-1238-y CrossRefGoogle Scholar
  20. 20.
    Spanos N, Misirlis DY, Kanellopoulou DG, Koutsoukos PG (2006) J Mater Sci 41:1805. doi: 10.1007/s10853-006-2952-9 CrossRefGoogle Scholar
  21. 21.
    Suzuki S, Grondahl L, Leavesley D, Wentrup-Byrne E (2005) Biomaterials 26:5303CrossRefGoogle Scholar
  22. 22.
    Grøndahl L, Bostrom T, Cardona F, Chiem K, Wentrup-Byrne E (2003) J Mater Sci Mater Med 14:503CrossRefGoogle Scholar
  23. 23.
    Filmon R, Grizon F, Basle MF, Chappard D (2002) Biomaterials 23:3053CrossRefGoogle Scholar
  24. 24.
    Zhu PX, Masuda Y, Koumoto K (2004) Biomaterials 25:3915CrossRefGoogle Scholar
  25. 25.
    Akazawa T, Kobayashi M, Kanno T, Kodaira K (1998) J Mater Sci 33:1927. doi: 10.1023/A:1004373809449 CrossRefGoogle Scholar
  26. 26.
    Silva CC, Pinheiro AG, Figueiró SD, Góes JC, Sasaki JM, Miranda MAR, Sombra ASB (2002) J Mater Sci 37:2061. doi: 10.1023/A:1015219800490 CrossRefGoogle Scholar
  27. 27.
    Kamei S, Tomita N, Tamai S, Kato K, Ikada Y (1997) J Biomed Mater Res 37:384CrossRefGoogle Scholar
  28. 28.
    James K, Levene H, Parsons JR, Kohn J (1999) Biomaterials 20:2203CrossRefGoogle Scholar
  29. 29.
    Li SH, Liu Q, de Wijn JR, Zhou BL, Groot K (1997) Biomaterials 18:389CrossRefGoogle Scholar
  30. 30.
    Tanahashi M, Matsuda T (1997) J Biomed Mater Res 34:305CrossRefGoogle Scholar
  31. 31.
    Lim JS, Kim JH (2009) J Mater Sci 44:6398. doi: 10.1007/s10853-009-3882-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Fei Ai
    • 1
  • Wang Zhang Yuan
    • 1
  • Quan Wang
    • 2
  • Hong Li
    • 1
  • Yongming Zhang
    • 1
  • Supeng Pei
    • 1
  1. 1.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Veterinary Institute, Chinese Academy of Agricultural SciencesShanghaiChina

Personalised recommendations