Journal of Materials Science

, Volume 47, Issue 8, pp 3544–3553 | Cite as

Coarsening of equiaxed microstructure in the semisolid state of aluminum 7075 alloy through SIMA processing



In the present study, the coarsening mechanism of equiaxed grains in the semisolid state of aluminum 7075 alloy, treated via strain induced melting activation process, was investigated. The kinetics of equiaxed grain growth in the semisolid state of the experimental alloy was determined. The results revealed that when the holding temperature increased, the coarsening rate constant (K) showed a precipitously increasing character in the range of 590–610 °C. This was attributed to the extensive effect of the coalescence mechanism on the grain growth at the high solid fractions. By further increasing the holding temperature to 620 and 625 °C (increasing the liquid fraction), the effect of coalescence on the grain growth appeared to be weakened, that is, although there was a slight decrease at 620 °C, a gently increasing character could be generally supposed. Severe segregation of Zn and Cu alloying elements at grain boundaries and intragranular droplets was detected at 620 and 625 °C after 15 and 10 min, respectively.


Solid Fraction Liquid Fraction Solidus Temperature Isothermal Holding Equiaxed Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-008/099) and (No. 2011-0030665) of MEST.


  1. 1.
    Spencer DB (1971) Dissertation, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  2. 2.
    Spencer DB, Mehrabian R, Flemings MC (1972) Metall Mater Trans B 3:1925CrossRefGoogle Scholar
  3. 3.
    Kapranos P, Ward PJ, Atkinson HV, Kirkwood DH (2000) Mater Des 21:387CrossRefGoogle Scholar
  4. 4.
    Flemings MC (1991) Metall Mater Trans A 22:269Google Scholar
  5. 5.
    Kirkwood DH (1994) Int Mater Rev 39:173CrossRefGoogle Scholar
  6. 6.
    Fan Z (2002) Int Mater Rev 47:49CrossRefGoogle Scholar
  7. 7.
    Atkinson HV (2005) Prog Mater Sci 50:341CrossRefGoogle Scholar
  8. 8.
    Atkinson HV, Liu D (2008) Mater Sci Eng A496:439Google Scholar
  9. 9.
    Omar MZ, Alfan A, Syarif J, Atkinson HV (2011) J Mater Sci. doi: 10.1007/s10853-011-5749-4
  10. 10.
    Zoqui EJ, Naldi MA (2011) J Mater Sci. doi: 10.1007/s10853-011-5730-2
  11. 11.
    Ji S, Fan Z, Bevis MJ (2001) Mater Sci Eng A 229:210Google Scholar
  12. 12.
    Mehrabian R, Flemings MC (1972) AFS Trans 80:173Google Scholar
  13. 13.
    Young KP, Kyonka CP, Courtois F (1983) Fine grained metal composition. United States Patent No. 4415374Google Scholar
  14. 14.
    Kirkwood DH, Sellars CM, Elias-Boyed LG (1992) Thixotropic materials. European Patent No. 0305375 B1Google Scholar
  15. 15.
    Atkinson HV, Burke K, Vaneetveld G (2008) Mater Sci Eng A 490:266CrossRefGoogle Scholar
  16. 16.
    Chayong S, Atkinson HV, Kapranos P (2005) Mater Sci Eng A 390:3CrossRefGoogle Scholar
  17. 17.
    Chayong S, Atkinson HV, Kapranos P (2004) Mater Sci Technol 20:490CrossRefGoogle Scholar
  18. 18.
    Vaneetveld G, Rassili A, Pierret JC (2008) Solid State Phenom 141–143:707CrossRefGoogle Scholar
  19. 19.
    Vaneetveld G, Rassili A, Pierret J-C, Lecomte-Beckers J (2008) Int J Mater Form 1:1019CrossRefGoogle Scholar
  20. 20.
    Bolouri Amir, Shahmiri Mohammad, Kang CG (2011) J Alloy Compd 509:402CrossRefGoogle Scholar
  21. 21.
    Tzimas Evangelos, Zavaliangos Antonios (2000) Mater Sci Eng A 289:228CrossRefGoogle Scholar
  22. 22.
    Kaysser WA, Takajo S, Petzow G (1984) Acta Mater 32:115CrossRefGoogle Scholar
  23. 23.
    Wolfsdrof TL, Bender WH, Voorhees PW (1997) Acta Mater 45:2279CrossRefGoogle Scholar
  24. 24.
    German RM (1996) Sintering theory and practice. Wiley, New YorkGoogle Scholar
  25. 25.
    Wolfsdorf TL, Bender WH, Voorhees PW (1997) Acta Mater 49:2279CrossRefGoogle Scholar
  26. 26.
    Annavarapu S, Doherty RD (1995) Acta Metall Mater 43:3207CrossRefGoogle Scholar
  27. 27.
    Liu D, Atkinson HV, Kapranos P, Jones H (2004) J Mater Sci 39:99. doi: 10.1023/B:JMSC.0000007732.04363.81 CrossRefGoogle Scholar
  28. 28.
    Cerri E, Evangelista E, Spigarelli S (2000) Mater Sci Eng A 284:254CrossRefGoogle Scholar
  29. 29.
    Cavaliere P, Cerri E, Leo P (2004) J Mater Sci 39:1653. doi: 10.1023/B:JMSC.0000016165.99666.dd CrossRefGoogle Scholar
  30. 30.
    Kleiner S, Beffort O, Uggowitzer PJ (2004) Scripta Mater 51:405CrossRefGoogle Scholar
  31. 31.
    Yu YB, Song PY, Kim SS (1999) Scripta Mater 41:767CrossRefGoogle Scholar
  32. 32.
    Cahn RW, Haasen P (1996) Physical Metallurgy, 4th edn. Elsevier, AmsterdamGoogle Scholar
  33. 33.
    Christian JW (1975) The theory of transformations in metals and alloys, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  34. 34.
    Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Pergamon Press, OxfordGoogle Scholar
  35. 35.
    Manson-Whitton ED, Stone IC, Jones JR, Grant PS, Cantor B (2002) Acta Mater 50:2517CrossRefGoogle Scholar
  36. 36.
    Hardy SC, Voorhees PW (1988) Metall Trans A 19:2713CrossRefGoogle Scholar
  37. 37.
    Kim Hee-Soo, Stone IanC, Cantor Brian (2008) J Mater Sci 43:1292. doi: 10.1007/s10853-007-2151-3 CrossRefGoogle Scholar
  38. 38.
    Mohammadi H, Ketabchi M, Kalaki A (2010) J Mater Eng Perform. doi: 10.1007/s11665-010-9762-6

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Amir Bolouri
    • 1
  • Mohammad Shahmiri
    • 2
  • Chung Gil Kang
    • 3
  1. 1.Graduate School of Mechanical and Precision EngineeringPusan National UniversityBusanRepublic of Korea
  2. 2.Department of Materials and Metallurgical EngineeringIran University of Science and TechnologyNarmak, TehranIran
  3. 3.School of Mechanical EngineeringPusan National UniversityBusanRepublic of Korea

Personalised recommendations