Journal of Materials Science

, Volume 47, Issue 7, pp 3435–3446 | Cite as

Influence of environmental relative humidity on the tensile and rotational behaviour of hemp fibres

  • Vincent Placet
  • Ousseynou Cisse
  • M. Lamine Boubakar


The aim of this study is to throw new light on the influence of moisture on the mechanical properties of hemp fibres. Indeed, the behaviour of plant-based fibres strongly depends on their humidity. Although this topic has been relatively well treated for the case of wood, the literature on fibre stemming from annual plants is unfortunately poor. This purpose is, however, of great importance, particularly in view of the production of high-performance composites. The influence of environmental conditions on the static and dynamic tensile moduli and the strength of elementary fibres are investigated using a versatile experimental setup. Novel equipment was also designed to measure the rotation of a fibre about its axis when it was subjected to static loading and moisture variations. Water sorption is shown to have a significant influence on the apparent tensile stiffness, strength and fracture mode of such fibres, and is also shown to act like an activator of the stiffening phenomena under cyclic loading. A remarkable increase in the fibre stiffness of up to 250% is measured. Significant longitudinal elongation, reaching a value in excess of 2%, is associated with this increase in stiffness. The absorption and desorption of moisture also lead to substantial rotation of the fibre about its axis. Water sorption certainly involves a modification of the adhesion between cellulose microfibrils and the amorphous matrix. Under cyclic loading, the cellulose microfibrils could be able to creep into the relaxed amorphous matrix, leading to their re-arrangement, with more parallel orientations with respect to the fibre axis.


Hemp fibres Tensile testing Water sorption Stiffening Damage DMA 



The authors would like to thank Jean-Marc Côte and Camille Garcin from the FEMTO-ST for their assistance with some of the experiments, and Patrick Perré from the Ecole Centrale de Paris (Laboratoire de Génie des Procédés et Matériaux—Material Processes Engineering Laboratory) for their very fruitful and helpful discussions. We also thank Christine Millot for her technical contribution to the SEM characterisation of elementary fibres.


  1. 1.
    Davies GC, Bruce DM (1998) Text Res J 68(9):623CrossRefGoogle Scholar
  2. 2.
    Symington MC, Banks WM, West OD, Pethrick RA (2009) J Comp Mater 43(9):1083CrossRefGoogle Scholar
  3. 3.
    Baley C, Morvan C, Grohens Y (2005) Macromol Symp 222:195CrossRefGoogle Scholar
  4. 4.
    van Voorn B, Smit HHG, Sinke RJ, de Klerk B (2001) Composites: Part A 32:1271CrossRefGoogle Scholar
  5. 5.
    Stamboulis A, Baillie CA, Peijs T (2001) Composites: Part A 32:1105CrossRefGoogle Scholar
  6. 6.
    Astley OM, Donald AM (2001) Biomacromolecules 2:672CrossRefGoogle Scholar
  7. 7.
    KhM Mannan, Robbany Z (1996) Polymer 37(20):4639CrossRefGoogle Scholar
  8. 8.
    Lee JM, Pawlak LJ, Heitmann JA (2010) Mater Charac 61(1):507CrossRefGoogle Scholar
  9. 9.
    Lee JM, Pawlak LJ, Heitmann JA (2007) Mater Sci Eng A 445–446:632Google Scholar
  10. 10.
    Pejic BM, Kostic MM, Skundric PD, Praskalo JZ (2008) Bioresour Technol 99:7152CrossRefGoogle Scholar
  11. 11.
    Watt IC, Kabir M (1975) Text Res J 45(1):42CrossRefGoogle Scholar
  12. 12.
    Saikia D, Bora MN (2003) Indian J Pure Appl Phys 41(6):484Google Scholar
  13. 13.
    Bourmaud A, Morvan C, Baley C (2010) Ind Crop Prod 32:662CrossRefGoogle Scholar
  14. 14.
    Placet V, Passard J, Perré P (2008) J Mater Sci 43:3210. doi: 10.1007/s10853-008-2546-9 CrossRefGoogle Scholar
  15. 15.
    Assor C, Placet V, Chabbert B, Habrant A, Lapierre C, Pollet B, Perré P (2009) J Agric Food Chem 57(15):6830CrossRefGoogle Scholar
  16. 16.
    Thygesen A (2006) Properties of hemp fibre polymer composites: an optimisation of fibre properties using novel defibration methods and fibre characterisation. PhD thesis, The Royal Agricultural and Veterinary University of Denmark, p 146Google Scholar
  17. 17.
    Duval A, Bourmaud A, Augier L, Baley C (2011) Mater Lett 65:797CrossRefGoogle Scholar
  18. 18.
    Baley C (2002) Composites: Part A 33:939CrossRefGoogle Scholar
  19. 19.
    Charlet K, Eve S, Jernot JP, Gomina M, Bréard J (2009) Procedia Eng 1:233CrossRefGoogle Scholar
  20. 20.
    Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Bréard J (2007) Comp Part A 38:1912CrossRefGoogle Scholar
  21. 21.
    Nilsson T, Gustafsson PJ (2007) Composites: Part A 38:1722CrossRefGoogle Scholar
  22. 22.
    Placet V (2009) Composites: Part A 40:1111CrossRefGoogle Scholar
  23. 23.
    Hearle JWS (1963) J Appl Polym Sci 7:1207CrossRefGoogle Scholar
  24. 24.
    Placet V, Bouali A, Perré P (2011) Matériaux Tech. doi: 10.1051/mattech/2011120
  25. 25.
    Obataya E, Norimoto M, Gril J (1998) Polymer 39(14):3059CrossRefGoogle Scholar
  26. 26.
    Placet V, Trivaudey F, Cisse O, Guicheret-Retel V, Boubakar ML (2012) Composites: Part A 43:275Google Scholar
  27. 27.
    Silva FA, Chawla N, Toledo Filho RD (2008) Comp Sci Tech 68:3438CrossRefGoogle Scholar
  28. 28.
    Kompella MK, Lambros J (2002) Polym Test 21:523CrossRefGoogle Scholar
  29. 29.
    Mc Laughlin EC, Tait RA (1980) J Mater Sci 15:89. doi: 10.1007/BF00552431 CrossRefGoogle Scholar
  30. 30.
    Virk AS, Hall W, Summerscales J (2010) Comp Sci Tech 70:995CrossRefGoogle Scholar
  31. 31.
    Virk AS, Hall W, Summerscales J (2009) Composites: Part A 40:1764CrossRefGoogle Scholar
  32. 32.
    Joffe R, Andersons J, Wallström L (2003) Composites: Part A 34:603CrossRefGoogle Scholar
  33. 33.
    Silva FA, Chawla N, Toledo Filho RD (2009) Mat Sci Eng A 516:90CrossRefGoogle Scholar
  34. 34.
    Placet V, Bouali A, Garcin C, Cote JM, Perré P (2011) Suivi par DRX des réarrangements microstructuraux induits par sollicitations mécaniques dans les fibres végétales tirées du chanvre. 20th CFM, BesançonGoogle Scholar
  35. 35.
    Matinschitz KJ, Boesecke P, Garvey CJ, Gindl W, Keckes J (2008) J Mater Sci 43:350. doi: 10.1007/s10853-006-1237-7 CrossRefGoogle Scholar
  36. 36.
    Kölln K, Grotkopp I, Burghammer M, Roth SV, Funari SS, Dommach M, Müller M (2005) J Synchrotron Radiat 12:739CrossRefGoogle Scholar
  37. 37.
    Astley OM, Donald AM (2003) J Mater Sci 38:165. doi: 10.1023/A:1021186421194 CrossRefGoogle Scholar
  38. 38.
    Placet V (2010) Tensile behaviour of natural fibres. Effect of loading rate, temperature and humidity on the “accommodation” phenomena. 14th ICEM, Poitiers, FranceGoogle Scholar
  39. 39.
    K. Charlet (2008) Contribution à l’étude de composites unidirectionnels renforcés par des fibres de lin: relation entre la microstructure de la fibre et ses propriétés mécaniques. PhD thesis, University of Caen, FranceGoogle Scholar
  40. 40.
    Bergfjord C, Holst B (2010) Ultramicroscopy 110:1192CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Vincent Placet
    • 1
  • Ousseynou Cisse
    • 1
  • M. Lamine Boubakar
    • 1
  1. 1.Department of Applied Mechanics, FEMTO-ST Institute, UMR CNRS 6174University of Franche-ComtéBesançonFrance

Personalised recommendations