Journal of Materials Science

, Volume 47, Issue 7, pp 3400–3406 | Cite as

Co-deposition and densification of SiC with MgO for biomedical applications

  • Katja Rade
  • Saša Novak
  • Goran Dražić
  • Spomenka Kobe


This article focuses on the electrophoretic co-deposition of SiC and MgO, which has not been previously reported. The EPD of SiC has been widely investigated, whilst the EPD of SiC with sintering additives is usually not taken into account since every compound added to the suspension seriously affects the zeta-potential and the conductivity, the two main parameters that should be optimized to achieve a good deposit. We comprehensively observed the effects of the individual compounds on the colloidal behaviour of a suspension suitable for co-deposition to achieve good homogeneity and the highest possible green density. The obtained green densities reached up to 1.92 g/cm3, which correspond to 60% of theoretical density, whilst after sintering in open air at 1350 °C the densities reached 2.33 g/cm3. SEM and TEM analyses revealed that the microstructure is composed of SiC grains embedded in a SiO2 matrix, whilst XRD confirmed that even though the sintering caused a partial oxidation and the appearance of an amorphous phase, the prevailing crystalline phase is still β-SiC. In the presence of MgO, SiO2 also appears in the crystalline form as cristobalite.


Forsterite Cristobalite Enstatite MgSiO3 Transient Liquid Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Reynaud C, Thevenot F, Chartier T, Besson JL (2005) J Eur Ceram Soc 25(5):589. doi: 10.1016/j.jeurceramsoc.2004.02.009 CrossRefGoogle Scholar
  2. 2.
    Cappi B, Neuss S, Salber J, Telle R, Knuchel R, Fischer H (2010) J Biomed Mater Res Part A 93A(1):67. doi: 10.1002/jbm.a.32527 Google Scholar
  3. 3.
    Prochazka S, Scanlan RM (1975) J Am Ceram Soc 58(1–2):72. doi: 10.1111/j.1151-2916.1975.tb18990.x CrossRefGoogle Scholar
  4. 4.
    Stobierski L, Gubernat A (2003) Effect Carbon Ceram Int 29(3):287. doi: 10.1016/s0272-8842(02)00117-7 Google Scholar
  5. 5.
    Stobierski L, Gubernat A (2003) Ceram Int 29(4):355. doi: 10.1016/s0272-8842(02)00144-x CrossRefGoogle Scholar
  6. 6.
    Gubernat A, Stobierski L, Labaj P (2007) J Eur Ceram Soc 27(2–3):781. doi: 10.1016/j.jeurceramsoc.2006.04.009 CrossRefGoogle Scholar
  7. 7.
    Kumar V, Gill KD (2009) Arch Toxicol 83(11):965. doi: 10.1007/s00204-009-0455-6 CrossRefGoogle Scholar
  8. 8.
    Tatli Z, Thompson DP (2007) J Eur Ceram Soc 27(2–3):1313. doi: 10.1016/j.jeurceramsoc.2006.04.056 CrossRefGoogle Scholar
  9. 9.
    Novak S, Drazic G, Konig K, Ivekovic A (2010) J Nucl Mater 399(2–3):167. doi: 10.1016/j.jnucmat.2010.01.014 CrossRefGoogle Scholar
  10. 10.
    Negita K (1986) J Am Ceram Soc 69(12):C308CrossRefGoogle Scholar
  11. 11.
    Miyazaki H, Hakomori A, Yasuda K, Matsuo Y, Yano T, Iseki T (2001) J Ceram Soc Jpn 109(3):227CrossRefGoogle Scholar
  12. 12.
    Foster D, Thompson DP (1999) J Eur Ceram Soc 19(16):2823. doi: 10.1016/s0955-2219(99)00060-6 CrossRefGoogle Scholar
  13. 13.
    Corni I, Ryan MP, Boccaccini AR (2008) J Eur Ceram Soc 28(7):1353. doi: 10.1016/j.jeurceramsoc.2007.12.011 CrossRefGoogle Scholar
  14. 14.
    Ivekovic A, Drazic G, Novak S (2011) J Eur Ceram Soc 31(5):833. doi: 10.1016/j.jeurceramsoc.2010.11.021 CrossRefGoogle Scholar
  15. 15.
    Konig K, Novak S, Ivekovic A, Rade K, Meng DC, Boccaccini AR, Kobe S (2010) J Eur Ceram Soc 30(5):1131. doi: 10.1016/j.jeurceramsoc.2009.07.027 CrossRefGoogle Scholar
  16. 16.
    Rade K, Novak S, Kobe S (2011) J Mater Sci Eng A 1(3a):301Google Scholar
  17. 17.
    Vandeperre L, VanDerBiest O, Bouyer F, Persello J, Foissy A (1997) J Eur Ceram Soc 17(2–3):373CrossRefGoogle Scholar
  18. 18.
    Hench LL (2006) J Mater Sci-Mater Med 17(11):967. doi: 10.1007/s10856-006-0432-z CrossRefGoogle Scholar
  19. 19.
    Bentz DP, Snyder KA, Cass LC, Peitz MA (2008) Cem Concr Compos 30(8):674. doi: 10.1016/j.cemconcomp.2008.05.001 CrossRefGoogle Scholar
  20. 20.
    Ferrari B, Moreno R (1996) Mater Lett 28(4–6):353. doi: 10.1016/0167-577x(96)00075-4 CrossRefGoogle Scholar
  21. 21.
    Novak S, Drazic G, Mejak K (2006) In: Boccaccini AR, VanderBiest O, Clasen R (eds) Electrophoretic deposition: fundamentals and applications, vol 314. Key Engineering Materials Trans Tech Publications Ltd., Zurich-Uetikon, p 45Google Scholar
  22. 22.
    Novak S, Mejak K, Drazic G (2006) J Mater Sci 41(24):8093. doi: 10.1007/s10853-006-0646-y CrossRefGoogle Scholar
  23. 23.
    Novak S, Konig K (2009) Ceram Int 35(7):2823. doi: 10.1016/j.ceramint.2009.03.033 CrossRefGoogle Scholar
  24. 24.
    Sun J, Gao L (2001) J Eur Ceram Soc 21(13):2447. doi: 10.1016/s0955-2219(01)00196-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Katja Rade
    • 1
  • Saša Novak
    • 1
  • Goran Dražić
    • 1
  • Spomenka Kobe
    • 1
  1. 1.Department for Nanostructured MaterialsJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations