Skip to main content
Log in

Characterization of double network epoxies with tunable compositions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reports the processing and characterization of epoxy resins with near constant molar cross-link density prepared from sequentially reacted amine cross-linking agents. Stoichiometric blends of curing agents with compositions ranging from all polyetheramine to all diaminodiphenylsulfone (DDS) are reacted with an epoxy monomer in a staged curing procedure. The low reactivity of the aromatic amine permits the selective reaction of the aliphatic amine in the first stage. The residual aromatic amine and epoxide functionality are reacted in a second stage at higher temperature. Above approximately 50% DDS content the first stage produces sol glasses which have not reached the gel point. The glass transition temperatures of the partially cured networks decrease monotonically with increasing DDS content. The partially cured networks can be characterized thermally and mechanically above their respective glass transitions without significantly advancing the reaction of the residual DDS and epoxide functionality. The networks formed after the second stage of the cure exhibit thermal and mechanical properties intermediate between those of the two individual amine cured networks, according to composition. The blends do not show any evidence of phase separation across the entire composition range in either the partially cured or fully cured state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Ellis B (1993) Chemistry and technology of epoxy resins. Chapman and Hall, New York

    Google Scholar 

  2. Bucknall CB, Partridge IK (1983) Polymer 24(5):639

    Article  CAS  Google Scholar 

  3. Wu WL, Bauer BJ (1989) Polymer 30:1384

    Article  CAS  Google Scholar 

  4. Beck Tan NC, Bauer BJ, Plestil J, Barnes JD, Liu D, Matejka L et al (1999) Polymer 40:4603

    Article  Google Scholar 

  5. Wu WL, Hu JT, Hunston DL (1990) Polym Eng Sci 30(14):835

    Article  CAS  Google Scholar 

  6. Philipson J (1959) Method and composition for curing epoxy resins. Patent 2891927

  7. Lahlali N, Naffakh M, Dumon M (2005) Polym Eng Sci 45:1581

    Article  CAS  Google Scholar 

  8. Wiggins PL (1988) Epoxy curing agent composition. USA patent 4,775,736

  9. Tesch H, Heym M, Doerflinger W, Stutz H, Neumann P, Nissen D, et al (1988) Curable compositions based on epoxy resins. USA patent RE32,628

  10. de Nograro FF, Llano-Ponte R, Mondragon I (1996) Polymer 37(9):1589

    Article  Google Scholar 

  11. Nakajima T, Furukawa H, Tanaka Y, Kurokawa T, Osada Y, Gong JP (2009) Macromolecules 42:2184

    Article  CAS  Google Scholar 

  12. Singh NK, Lesser AJ (2010) Macromolecules 44:1480

    Google Scholar 

  13. Thiele JL, Cohen RE (1979) Polym Eng Sci 19(4):284

    Article  CAS  Google Scholar 

  14. Bellenger V, Dhaoui W, Verdu J (1990) Polym Eng Sci 30(6):321

    Article  CAS  Google Scholar 

  15. Jordan C, Galy J, Pascualt JP (1992) J Appl Polym Sci 46:859

    Article  CAS  Google Scholar 

  16. Detwiler AT, Lesser AJ (2010) J Appl Polym Sci 117:1021

    Article  CAS  Google Scholar 

  17. Flory PJ (1941) J Am Chem Soc 63:3083

    Article  CAS  Google Scholar 

  18. Cook WD, Scott TF, Quay-Thevenon S, Forsythe JS (2004) J Appl Polym Sci 93:1349

    Article  Google Scholar 

  19. Adam G, Gibbs JH (1965) J Chem Phys 43(1):139

    Article  CAS  Google Scholar 

  20. Boyer RF (1963) Rubber Chem Technol 46:1303

    Article  Google Scholar 

  21. Hale A, Macosko CW, Bair HE (1991) Macromolecules 24:2610

    Article  CAS  Google Scholar 

  22. Lovell R, Windle AH (1990) Polymer 31(4):593

    Article  CAS  Google Scholar 

  23. Wu Wl, Bauer BJ (1986) Polymer 27:169

    Article  CAS  Google Scholar 

  24. Arruda EM, Boyce MC (1993) Int J Plasticity 9:697

    Article  CAS  Google Scholar 

  25. Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) J Polym Sci: B Polym Phys 17:1097

    CAS  Google Scholar 

  26. Lesser AJ, Calzia KJ (2004) J Polym Sci B: Polym Phys 42:2050

    Article  CAS  Google Scholar 

  27. Crawford ED, Lesser AJ (1998) J Polym Sci: B Polym Phys 36:1371

    Article  CAS  Google Scholar 

  28. van Melick HGH, Govaert LE, Meijer HEH (2003) Polymer 44:2493

    Article  Google Scholar 

  29. Cross A, Haward RN (1978) Polymer 19:677

    Article  CAS  Google Scholar 

  30. Treloar LRG (1975) The physics of rubber elasticity. Clarendon Press, Oxford

    Google Scholar 

  31. Arruda EM, Boyce MC, Jayachandran R (1995) Mech Mater 19:193

    Article  Google Scholar 

  32. Haward RN, Thackray G (1968) Proc R Soc Lond A 302:453

    Article  Google Scholar 

  33. Tervoort TA, Govaert LE (2000) J Rheol 44(6):1263

    Article  CAS  Google Scholar 

  34. Charlesworth JM (1988) Polym Eng Sci 28(4):230

    Article  CAS  Google Scholar 

  35. Porter RS, Johnson JF (1966) Chem Rev 66(1):1

    Article  Google Scholar 

  36. Hoy RS, Robbins MO (2006) J Polym Sci: B Polym Phys 44:3487

    Article  CAS  Google Scholar 

  37. Haward RN, Young RJ (1997) The physics of glassy polymers. Chapman and Hall, New York

    Book  Google Scholar 

  38. Wendlandt M, Tervoort TA, Suter UW (2010) J Polym Sci: B Polym Phys 48:1464

    Article  CAS  Google Scholar 

  39. Govaert LE, Engels TAP, Wendlandt M, Tervoort T, Suter UW (2008) J Polym Sci: B Polym Phys 46:2475

    Article  CAS  Google Scholar 

  40. Lesser AJ, Crawford E (1997) J Appl Polym Sci 66:387

    Article  CAS  Google Scholar 

  41. Fox TG, Loshaek S (1955) J Polym Sci 15:371

    Article  CAS  Google Scholar 

  42. Espuche E, Galy J, Gerard JF, Pascualt JP, Sautereau H (1995) Macromol Symp 93:107

    Article  CAS  Google Scholar 

  43. Robertson RE (1966) J Chem Phys 44(10):3950

    Article  Google Scholar 

  44. Calzia KJ, Lesser AJ (2007) J Mater Sci 32:5229. doi:10.1007/s10853-006-1268-0

    Article  Google Scholar 

  45. Bree HW, Heijboer J, Struik LCE, Tak AGM (1974) J Polym Sci: B Polym Phys 12:1857

    CAS  Google Scholar 

  46. Charlesworth JM (1988) Polym Eng Sci 28(4):221

    Article  CAS  Google Scholar 

  47. G’Sell C, McKenna GB (1992) Polymer 33(10):2103

    Article  Google Scholar 

  48. Wang X, Gillham JK (1993) J Appl Polym Sci 47:447

    Article  CAS  Google Scholar 

  49. Boyce MC, Arruda EM (2000) Rubber Chem Technol 73(3):504

    Article  CAS  Google Scholar 

  50. Rivlin RS, Saunders DW (1951) Philos Trans R Soc Lond A 243:251

    Article  Google Scholar 

  51. Bicerano J (2002) Prediction of polymer properties, 3rd edn. Marcel Dekker, Inc., New York

    Book  Google Scholar 

  52. Bicerano J, Sammler RL, Carriere CJ, Seitz JT (1996) J Polym Sci: B Polym Phys 34:2247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Lesser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detwiler, A.T., Lesser, A.J. Characterization of double network epoxies with tunable compositions. J Mater Sci 47, 3493–3503 (2012). https://doi.org/10.1007/s10853-011-6182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6182-4

Keywords

Navigation