Journal of Materials Science

, Volume 47, Issue 7, pp 3103–3114 | Cite as

Strain- and strain-rate-dependent mechanical properties and behaviors of Cu3Sn compound using molecular dynamics simulation

  • Hsien-Chie Cheng
  • Ching-Feng Yu
  • Wen-Hwa Chen


This work aims at investigating the mechanical properties and behaviors of orthorhombic Cu3Sn crystals at room temperature through molecular dynamics (MD) simulation. The focuses are placed on the tensile stress–strain behaviors and properties of the Cu3Sn single crystal and also their dependence on applied strain and strain rate. An attempt to characterize the deformation evolution of the Cu3Sn nanostructure during the stress–strain test is also made. In addition, the elastic properties of bulk polycrystalline Cu3Sn are estimated, as a function of strain rate and applied strain, by using the monocrystal results. The effectiveness of the MD model is demonstrated through comparison with the nanoindentation results and also published theoretical and experimental data. The calculated orthotropic elastic and shear moduli and Poisson’s ratio of Cu3Sn single crystal reveal not only high anisotropy, but also the great effects of applied strain and strain rate only as the strain rate exceeds a threshold value of about 0.072% ps−1. Specifically, raising the strain rate increases the orthotropic elastic properties and also the ultimate tensile and shear strengths of the nanocrystal, whereas increasing the applied strain reduces them.


Applied Strain Nanoindentation Testing Molecular Dynamic Model Under Bump Metallurgy Modify Embed Atom Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work is partially supported by National Science Council, Taiwan, R.O.C., under Grants NSC98-2221-E-007-016-MY3 and NSC99-2221-E-035-021.


  1. 1.
    Suganuma K (2001) Curr Opin Solid State Mater Sci 5:55CrossRefGoogle Scholar
  2. 2.
    Fangjie C, Hiroshi N, Tadashi T (2008) J Mater Sci 43:3643. doi: 10.1007/s10853-008-2580-7 CrossRefGoogle Scholar
  3. 3.
    Lee YG, Duh JG (1998) J Mater Sci 33:5569. doi: 10.1023/A:1004499728840 CrossRefGoogle Scholar
  4. 4.
    Yoon JW, Jung SB (2004) J Mater Sci 39:4211. doi: 10.1023/B:JMSC.0000033401.38785.73 CrossRefGoogle Scholar
  5. 5.
    Yao D, Shang JK (1995) Metall Mater Trans A 26:2677CrossRefGoogle Scholar
  6. 6.
    Kim JY, Sohn YC, Yu J (2007) J Mater Res 22:770CrossRefGoogle Scholar
  7. 7.
    Fields RJ, Low SR III, Lucey GK Jr (1992) In: Cieslak MJ, Perepezko JH, Kang S, Glicksman ME (eds) The metal science of joining. TMS, Warrendale, PA, p 165Google Scholar
  8. 8.
    Albrecht HJ, Juritza A, Muller K, Sterthaus J, Villain J, Vogliano A (2003) IEEE, EPTC:0-7803-8205Google Scholar
  9. 9.
    Chromik RR, Vinci RP, Allen SL, Notis MR (2003) J Mater Res 18:2251CrossRefGoogle Scholar
  10. 10.
    Deng X, Chawla N, Chawla KK, Koopman M (2004) Acta Mater 52:4291CrossRefGoogle Scholar
  11. 11.
    Ghosh G (2004) J Mater Res 19:1439CrossRefGoogle Scholar
  12. 12.
    Jang GY, Lee JW, Dun JG (2004) J Electron Mater 33:1103CrossRefGoogle Scholar
  13. 13.
    Xu L, Pang JHL (2006) Thin Solid Films 504:362CrossRefGoogle Scholar
  14. 14.
    Yang PF, Lai YS, Jian SR, Chen J (2007) IEEE, EPTC:1-4244-1392Google Scholar
  15. 15.
    Kart SO, Erbay A, Kilic H, Cagin T, Tomak M (2008) J Achiev Mater Manuf Eng 31:41Google Scholar
  16. 16.
    Lee NTS, Tan VBC, Lim KM (2006) Appl Phys Lett 88:031913CrossRefGoogle Scholar
  17. 17.
    An R, Wang C, Tian T, Wu H (2008) J Electron Mater 37:477CrossRefGoogle Scholar
  18. 18.
    Chen J, Lai YS, Ren CY, Huang DJ (2008) Appl Phys Lett 92:081901CrossRefGoogle Scholar
  19. 19.
    Pang XY, Wang SQ, Zang L, Liu ZQ, Shang JK (2008) J Alloys Compd 466:517CrossRefGoogle Scholar
  20. 20.
    Yang Y, Lu H, Yu C, Chen J (2009) ICEPT-HDP:978-1-4244-4659Google Scholar
  21. 21.
    Chen WH, Cheng HC, Yu CF (2010) IEEE EuroSim 2010:1Google Scholar
  22. 22.
    Zhou W, Liu L, Wu P (2010) Intermetallics 18:922CrossRefGoogle Scholar
  23. 23.
    Baskes MI, Nelson JS, Wright AF (1989) Phys Rev B 40:6085CrossRefGoogle Scholar
  24. 24.
    Baskes MI (1992) Phys Rev B 46:2727CrossRefGoogle Scholar
  25. 25.
    Baskes MI (1997) Mater Chem Phys 50:152CrossRefGoogle Scholar
  26. 26.
    Verma JKD, Nag BD (1965) J Phys Soc Jpn 20:635CrossRefGoogle Scholar
  27. 27.
    Hill R (1952) Proc Phys Soc 65:350Google Scholar
  28. 28.
    Rose JH, Smith JR, Ferrante J (1984) Phys Rev B 29:2963CrossRefGoogle Scholar
  29. 29.
    Chromik RR, Cotts ET (1995) In: Im JS, Park B, Greer AL, Stephenson GB (eds) Thermodynamics and kinetics of phase transformations, Pittsburgh, Proc Mater Res Soc, vol 398, p 307Google Scholar
  30. 30.
    Ravelo RJ, Baskes MI (1997) Phys Rev Lett 79:2482CrossRefGoogle Scholar
  31. 31.
    Bodig J, Jayne BA (1993) Mechanics of wood and wood composite. Krieger Publishing Company, Malabar, FLGoogle Scholar
  32. 32.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  33. 33.
    Villar P, Calvet LD (1991) Pearson’s handbook of crystallographic data for intermetallic phase 3, 2nd edn. ASM International, Materials Park, OH, p 3007Google Scholar
  34. 34.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684CrossRefGoogle Scholar
  35. 35.
    Zhou M (2003) Proc R Soc A 459:2347CrossRefGoogle Scholar
  36. 36.
    Ikeda H, Qi Y, Cagin T, Samwer K, Johnson WL, Goddard WA III (1999) Phys Rev Lett 82:2900CrossRefGoogle Scholar
  37. 37.
    Branı′cio PS, Rino JP (2000) Phys Rev B 62:16950CrossRefGoogle Scholar
  38. 38.
    Sankaranarayanan SKRS, Bhethanabotla VR, Joseph B (2007) Phys Rev B 76:134117CrossRefGoogle Scholar
  39. 39.
    Follansbee PS (1986) In: Murr LE, Staudhammer KP, Meyers MA (eds) Metallurgical applications of shock-wave and high-strain-rate phenomena. Marcel Dekker, New York, p 451Google Scholar
  40. 40.
    Shchukin ED, Yushchenko VS (1981) J Mater Sci 16:313. doi: 10.1007/BF00738620 CrossRefGoogle Scholar
  41. 41.
    Park HS, Zimmerman JA (2005) Phys Rev B 72:054106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hsien-Chie Cheng
    • 1
    • 2
  • Ching-Feng Yu
    • 3
  • Wen-Hwa Chen
    • 3
    • 4
  1. 1.Department of Aerospace and Systems EngineeringFeng Chia UniversityTaichungTaiwan, ROC
  2. 2.National Center for High-Performance ComputingHsinchuTaiwan, ROC
  3. 3.Department of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan, ROC
  4. 4.National Applied Research LaboratoriesTaipeiTaiwan, ROC

Personalised recommendations