Journal of Materials Science

, Volume 47, Issue 6, pp 2875–2881 | Cite as

Physical properties of thermally evaporated silicon films nitrided at different rf plasma-processing time

  • S. H. Mohamed
  • M. Raaif
  • A. M. Abd El-Rahman


Nitrided surfaces and composition gradients in thin films exhibit interesting mechanical, electrical, and optical properties. Therefore, amorphous hydrogen-free silicon (a-Si) thin films were deposited by electron beam evaporation and subsequently nitrided by an inductively coupled rf plasma. The effects of successive plasma-processing cyclic time on structural and optical properties as well as electrical resistivity were examined by different characterization techniques. It was found that the rf plasma treatment has a massive effect on the physical properties of the Si films. The Si thin films were transformed gradually into nitrides compound and the amount of nitrogen in the film increased with increasing the rf plasma-processing time. The Si nitrided films showed structural, optical, and electrical properties dependent on the plasma-nitriding time. Increasing the rf plasma-processing time reduced the thickness, increased transmittance, increased resistivity, and decreased the reflectance of the nitrided Si films. The electrical resistivity increased to about nine orders of magnitude when the film was nitrided at a plasma-processing time of 25 min. The optical band gap increased from 2.42 to 3.52 eV with increasing the plasma-processing time from 10 to 35 min. The decrease in the refractive index with the increase in the plasma-processing time is attributed to the possible change in the bucking density as well as to the increase in the band gap.


Silicon Nitride Electron Beam Evaporation Nitrogen Plasma Silicon Thin Film Nitride Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Prof. Dr. F.M. El-Hossary is acknowledged for his technical support and fruitful discussions.


  1. 1.
    Gordon I, Vallon S, Mayolet A, Beaucarne G, Poortmans J (2010) Sol Energy Mater Sol Cells 94:381CrossRefGoogle Scholar
  2. 2.
    Zhao L, Zuo YH, Zhou CL, Li HL, Diao HW, Wang WJ (2010) Sol Energy 84:110CrossRefGoogle Scholar
  3. 3.
    Modreanu M, Gartner M, Cobianu C, O’Looney B, Murphy F (2004) Thin Solid Films 450:105CrossRefGoogle Scholar
  4. 4.
    Conde JP, Gaspar J, Chu V (2003) Thin Solid Films 427:181CrossRefGoogle Scholar
  5. 5.
    Guo H, Zhao H, Yin C, Qiu W (2006) Mater Sci Eng B 131:173CrossRefGoogle Scholar
  6. 6.
    Netti MC, Charlton MDB, Parker GJ, Baumberg JJ (2000) Appl Phys Lett 76:911CrossRefGoogle Scholar
  7. 7.
    Mohite KC, Khollam YB, Mandale AB, Patil KR, Takwale MG (2003) Mater Lett 57:4170CrossRefGoogle Scholar
  8. 8.
    Ay F, Aydinli A (2004) Opt Mater 26:33CrossRefGoogle Scholar
  9. 9.
    Anders A (2005) Surf Coat Technol 200:1893CrossRefGoogle Scholar
  10. 10.
    Lieberman MA, Lichtenberg A (1994) Principles of plasma discharges and materials processing. Wiley, New YorkGoogle Scholar
  11. 11.
    Makabe T, Lj Petrovic Z (2006) Plasma electronics: applications in microelectronic device fabrication. Taylor & Francis Group, New YorkGoogle Scholar
  12. 12.
    Hino T, Harada M, Yamauchi Y, Hirohata Y (1998) Surf Coat Technol 108–109:312CrossRefGoogle Scholar
  13. 13.
    Chang F-W, Liou T-H, Tsai F-M (2000) Thermochem Acta 354:71CrossRefGoogle Scholar
  14. 14.
    Hellman OC, Herbots N, Vancauwenberghe O (1992) Nucl Instrum Methods Phys Res Sect B 67:301CrossRefGoogle Scholar
  15. 15.
    Hezel R, Lieske N (1982) J Electrochem Soc 129:379CrossRefGoogle Scholar
  16. 16.
    Taniguchi S, Shibata T, Nakamura K, Xianghuai L, Zhihong Z, Wei H, Shichang Z (1989) Mater Sci Eng A 121:519CrossRefGoogle Scholar
  17. 17.
    Hayakawa R, Yoshimura T, Ashida A, Uehara T, Fujimura N (2006) Thin Solid Films 506–507:423CrossRefGoogle Scholar
  18. 18.
    Perera R, Ikeda A, Hattori R, Kuroki Y (2003) Thin Solid Films 423:212CrossRefGoogle Scholar
  19. 19.
    Troxell JR (1985) J Electr Mat 14:707CrossRefGoogle Scholar
  20. 20.
    Netterfield RP, Martin PJ, Sainty WG (1986) Appl Opt 25:3808CrossRefGoogle Scholar
  21. 21.
    Petruzello J, McGee TF, Frommer MH, Rumennuk V, Walters PA, Chou CJ (1985) J Appl Phys 58:4605CrossRefGoogle Scholar
  22. 22.
    El-Hossary FM, Negm NZ, Khalil SM, Abd El-Rahman AM (2002) Thin Solid Films 405:179CrossRefGoogle Scholar
  23. 23.
    El-Hossary FM, Negm NZ, Khalil SM, Raaif M (2006) Thin Solid Films 497:196CrossRefGoogle Scholar
  24. 24.
    Jain IP, Garima Agarwal (2011) Surf Sci Rep 66:77CrossRefGoogle Scholar
  25. 25.
    Mohamed SH, Anders A (2007) Thin Solid Films 515:5264CrossRefGoogle Scholar
  26. 26.
    Cullity BD (1979) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading, p 102Google Scholar
  27. 27.
    Alpuim P, Ferreira P, Chu V, Conde JP (2002) J Non-Cryst Solids 299–302:434CrossRefGoogle Scholar
  28. 28.
    Vila M, Prieto C, Ramırez R (2004) Thin Solid Films 459:195CrossRefGoogle Scholar
  29. 29.
    Miyazaki H, Goto T (2006) J Non-Cryst Solids 352:329CrossRefGoogle Scholar
  30. 30.
    El-Naggar AM, Al-Dhafiri AM (2009) Opt Laser Technol 41:295CrossRefGoogle Scholar
  31. 31.
    Panwar OS, Mukherjee C, Bhattacharyya R (1999) Sol Energy Mater Sol Cells 57:373CrossRefGoogle Scholar
  32. 32.
    Ayouchi R, Schwarz R, Melo LV, Ramalho R, Alves E, Marques CP, Santos L, Almeida R, Conde O (2009) Appl Surf Sci 255:5299CrossRefGoogle Scholar
  33. 33.
    Mullerova J, Jurecka S, Sutta P (2006) Sol Energy 80:667CrossRefGoogle Scholar
  34. 34.
    Parashar A, Kumar S, Gope J, Rauthan CMS, Dixit PN, Hashmi SA (2010) Sol Energy Mater Sol Cells 94:892CrossRefGoogle Scholar
  35. 35.
    Deshpande SV, Gulari E, Brown SW, Rand SC (1995) J Appl Phys 77:6534CrossRefGoogle Scholar
  36. 36.
    Guruvenket S, Ghatak J, Satyam PV, Mohan Rao G (2005) Thin Solid Films 478:256CrossRefGoogle Scholar
  37. 37.
    Straboni A, Pichon L, Girardeau T (2000) Surf Coat Technol 125:100CrossRefGoogle Scholar
  38. 38.
    Verlaan V, Verkerk AD, Arnoldbik WM, van der Werf CHM, Bakker R, Houweling ZS, Romijn IG, Borsa DM, Weeber AW, Luxembourg SL, Zeman M, Dekkers HFW, Schropp REI (2009) Thin Solid Films 517:3499CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. H. Mohamed
    • 1
    • 2
  • M. Raaif
    • 1
  • A. M. Abd El-Rahman
    • 1
  1. 1.Department of PhysicsFaculty of Science, Sohag UniversitySohagEgypt
  2. 2.Department of PhysicsCollege of Science, Qassim UniversityBuryadhKingdom of Saudi Arabia

Personalised recommendations