Skip to main content
Log in

Physical properties of thermally evaporated silicon films nitrided at different rf plasma-processing time

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nitrided surfaces and composition gradients in thin films exhibit interesting mechanical, electrical, and optical properties. Therefore, amorphous hydrogen-free silicon (a-Si) thin films were deposited by electron beam evaporation and subsequently nitrided by an inductively coupled rf plasma. The effects of successive plasma-processing cyclic time on structural and optical properties as well as electrical resistivity were examined by different characterization techniques. It was found that the rf plasma treatment has a massive effect on the physical properties of the Si films. The Si thin films were transformed gradually into nitrides compound and the amount of nitrogen in the film increased with increasing the rf plasma-processing time. The Si nitrided films showed structural, optical, and electrical properties dependent on the plasma-nitriding time. Increasing the rf plasma-processing time reduced the thickness, increased transmittance, increased resistivity, and decreased the reflectance of the nitrided Si films. The electrical resistivity increased to about nine orders of magnitude when the film was nitrided at a plasma-processing time of 25 min. The optical band gap increased from 2.42 to 3.52 eV with increasing the plasma-processing time from 10 to 35 min. The decrease in the refractive index with the increase in the plasma-processing time is attributed to the possible change in the bucking density as well as to the increase in the band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gordon I, Vallon S, Mayolet A, Beaucarne G, Poortmans J (2010) Sol Energy Mater Sol Cells 94:381

    Article  CAS  Google Scholar 

  2. Zhao L, Zuo YH, Zhou CL, Li HL, Diao HW, Wang WJ (2010) Sol Energy 84:110

    Article  CAS  Google Scholar 

  3. Modreanu M, Gartner M, Cobianu C, O’Looney B, Murphy F (2004) Thin Solid Films 450:105

    Article  CAS  Google Scholar 

  4. Conde JP, Gaspar J, Chu V (2003) Thin Solid Films 427:181

    Article  CAS  Google Scholar 

  5. Guo H, Zhao H, Yin C, Qiu W (2006) Mater Sci Eng B 131:173

    Article  CAS  Google Scholar 

  6. Netti MC, Charlton MDB, Parker GJ, Baumberg JJ (2000) Appl Phys Lett 76:911

    Article  Google Scholar 

  7. Mohite KC, Khollam YB, Mandale AB, Patil KR, Takwale MG (2003) Mater Lett 57:4170

    Article  CAS  Google Scholar 

  8. Ay F, Aydinli A (2004) Opt Mater 26:33

    Article  CAS  Google Scholar 

  9. Anders A (2005) Surf Coat Technol 200:1893

    Article  CAS  Google Scholar 

  10. Lieberman MA, Lichtenberg A (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  11. Makabe T, Lj Petrovic Z (2006) Plasma electronics: applications in microelectronic device fabrication. Taylor & Francis Group, New York

    Google Scholar 

  12. Hino T, Harada M, Yamauchi Y, Hirohata Y (1998) Surf Coat Technol 108–109:312

    Article  Google Scholar 

  13. Chang F-W, Liou T-H, Tsai F-M (2000) Thermochem Acta 354:71

    Article  CAS  Google Scholar 

  14. Hellman OC, Herbots N, Vancauwenberghe O (1992) Nucl Instrum Methods Phys Res Sect B 67:301

    Article  Google Scholar 

  15. Hezel R, Lieske N (1982) J Electrochem Soc 129:379

    Article  CAS  Google Scholar 

  16. Taniguchi S, Shibata T, Nakamura K, Xianghuai L, Zhihong Z, Wei H, Shichang Z (1989) Mater Sci Eng A 121:519

    Article  Google Scholar 

  17. Hayakawa R, Yoshimura T, Ashida A, Uehara T, Fujimura N (2006) Thin Solid Films 506–507:423

    Article  Google Scholar 

  18. Perera R, Ikeda A, Hattori R, Kuroki Y (2003) Thin Solid Films 423:212

    Article  CAS  Google Scholar 

  19. Troxell JR (1985) J Electr Mat 14:707

    Article  CAS  Google Scholar 

  20. Netterfield RP, Martin PJ, Sainty WG (1986) Appl Opt 25:3808

    Article  CAS  Google Scholar 

  21. Petruzello J, McGee TF, Frommer MH, Rumennuk V, Walters PA, Chou CJ (1985) J Appl Phys 58:4605

    Article  Google Scholar 

  22. El-Hossary FM, Negm NZ, Khalil SM, Abd El-Rahman AM (2002) Thin Solid Films 405:179

    Article  CAS  Google Scholar 

  23. El-Hossary FM, Negm NZ, Khalil SM, Raaif M (2006) Thin Solid Films 497:196

    Article  CAS  Google Scholar 

  24. Jain IP, Garima Agarwal (2011) Surf Sci Rep 66:77

    Article  CAS  Google Scholar 

  25. Mohamed SH, Anders A (2007) Thin Solid Films 515:5264

    Article  CAS  Google Scholar 

  26. Cullity BD (1979) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading, p 102

    Google Scholar 

  27. Alpuim P, Ferreira P, Chu V, Conde JP (2002) J Non-Cryst Solids 299–302:434

    Article  Google Scholar 

  28. Vila M, Prieto C, Ramırez R (2004) Thin Solid Films 459:195

    Article  CAS  Google Scholar 

  29. Miyazaki H, Goto T (2006) J Non-Cryst Solids 352:329

    Article  CAS  Google Scholar 

  30. El-Naggar AM, Al-Dhafiri AM (2009) Opt Laser Technol 41:295

    Article  CAS  Google Scholar 

  31. Panwar OS, Mukherjee C, Bhattacharyya R (1999) Sol Energy Mater Sol Cells 57:373

    Article  CAS  Google Scholar 

  32. Ayouchi R, Schwarz R, Melo LV, Ramalho R, Alves E, Marques CP, Santos L, Almeida R, Conde O (2009) Appl Surf Sci 255:5299

    Article  CAS  Google Scholar 

  33. Mullerova J, Jurecka S, Sutta P (2006) Sol Energy 80:667

    Article  Google Scholar 

  34. Parashar A, Kumar S, Gope J, Rauthan CMS, Dixit PN, Hashmi SA (2010) Sol Energy Mater Sol Cells 94:892

    Article  CAS  Google Scholar 

  35. Deshpande SV, Gulari E, Brown SW, Rand SC (1995) J Appl Phys 77:6534

    Article  CAS  Google Scholar 

  36. Guruvenket S, Ghatak J, Satyam PV, Mohan Rao G (2005) Thin Solid Films 478:256

    Article  CAS  Google Scholar 

  37. Straboni A, Pichon L, Girardeau T (2000) Surf Coat Technol 125:100

    Article  CAS  Google Scholar 

  38. Verlaan V, Verkerk AD, Arnoldbik WM, van der Werf CHM, Bakker R, Houweling ZS, Romijn IG, Borsa DM, Weeber AW, Luxembourg SL, Zeman M, Dekkers HFW, Schropp REI (2009) Thin Solid Films 517:3499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. Dr. F.M. El-Hossary is acknowledged for his technical support and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raaif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, S.H., Raaif, M. & Abd El-Rahman, A.M. Physical properties of thermally evaporated silicon films nitrided at different rf plasma-processing time. J Mater Sci 47, 2875–2881 (2012). https://doi.org/10.1007/s10853-011-6117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6117-0

Keywords

Navigation