Journal of Materials Science

, Volume 47, Issue 6, pp 2763–2769 | Cite as

Nanodomain and interface structure in epitaxial BaTiO3 thin films on MgO deposited by magnetron sputtering

  • J. He
  • H. Q. Jiang
  • J. C. Jiang
  • E. I. Meletis


High epitaxial quality BaTiO3 films were deposited on the MgO (001) substrate using RF magnetron sputtering at 800 °C by manipulating processing parameters. The BaTiO3 films have a ~200 nm thickness with a very low surface roughness but a rough interface structure with respect to the substrate. The epitaxial BaTiO3 films have a tetragonal crystal structure (a = 4.02 Å and c = 4.11 Å) with a tetragonality (c/a) of 1.02. The c-axis of the film is parallel to the growth direction as characterized by X-ray diffraction, electron diffraction, and high-resolution transmission electron microscopy. The orientation relationship between the film and the MgO is (001)BTO//(001)MgO and 〈100〉BTO//〈100〉MgO. Epitaxial nanodomains were formed in the film with a size ranging from 3 to 20 nm. The formation of the nanodomains is associated with the rough film/substrate interface due to the modification of the substrate surface characteristics (steps, terraces, and kinks) during the process. The two-dimensional interface structure between the film and the substrate was studied and its influence on the film microstructure is discussed.


BaTiO3 Lattice Mismatch Misfit Dislocation Radio Frequency Magnetron BaTiO3 Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the National Science Foundation under Awards NSF/CMMI-0709293, NSF/DMR-0821745 and State of Texas, Advanced Research Program.


  1. 1.
    Francombe MH (1973) Thin Solid Films 13:413CrossRefGoogle Scholar
  2. 2.
    Beckers L, Schubert J, Zander W, Ziesmann J, Eckau A, Leinenbach D, Ch Buchal (1998) J Appl Phys 83:3305CrossRefGoogle Scholar
  3. 3.
    Sharma HB, Sarma HNK, Mansingh A (1999) J Mater Sci 34:1385. doi: 10.1023/A:1004578905297 CrossRefGoogle Scholar
  4. 4.
    Mckee RA, Walker FJ, Specht ED, Alexander KB (1994) Mater Res Soc Symp Proc 341:309CrossRefGoogle Scholar
  5. 5.
    Bihari B, Kumar J, Stauf GT, Van Buskirk PC, Hwang CS (1994) J Appl Phys 76:1169CrossRefGoogle Scholar
  6. 6.
    Wills LA, Wessels BW, Richeson DS, Marks TJ (1992) Appl Phys Lett 60:41CrossRefGoogle Scholar
  7. 7.
    Yoneda Y, Okabe T, Sakaue K, Terauchi H (1998) J Surf Sci 410:62CrossRefGoogle Scholar
  8. 8.
    Iijima K, Terashima T, Yamamoto K, Hirata K, Bando Y (1990) Appl Phys Lett 56:527CrossRefGoogle Scholar
  9. 9.
    Matsuoka M, Hoshino K, Ono K (1994) J Appl Phys 76:1768CrossRefGoogle Scholar
  10. 10.
    Lin WJ, Tseng TY, Lu HB, Tu SL, Yang SJ, Lin IN (1995) J Appl Phys 77:6466CrossRefGoogle Scholar
  11. 11.
    Kim JH, Hishita S (1995) J Mater Sci 30:4645. doi: 10.1007/BF01153074 CrossRefGoogle Scholar
  12. 12.
    Yoneda Y, Okabe T, Sakaue K, Terauchi H, Kasatani H, Deguchi K (1998) J Appl Phys 83:2458CrossRefGoogle Scholar
  13. 13.
    Guo HZ, Liu LF, Chen ZH, Ding S, Lu HB, Jin KJ, Zhou YL, Cheng BL (2006) Europhys Lett 73:110CrossRefGoogle Scholar
  14. 14.
    Li CL, Cui DF, Zhou YL, Lu HB, Chen ZH, Zhang DF, Wu F (1998) Appl Surf Sci 136:173CrossRefGoogle Scholar
  15. 15.
    Hontsu S, Ishii J, Tabata H, Kawai T (1995) Appl Phys Lett 67:554CrossRefGoogle Scholar
  16. 16.
    Li CL, Chen ZH, Zhou YL, Cui DF (2001) J Phys 13:5261Google Scholar
  17. 17.
    Rotter LD, Kaiser DL, Vaudin MD (1996) Appl Phys Lett 68:310CrossRefGoogle Scholar
  18. 18.
    Funakubo H, Nagano D, Saiki A, Inagaki Y, Shinozaki K, Mizutani N (1997) Jpn J Appl Phys 36:5879CrossRefGoogle Scholar
  19. 19.
    Shih WC, Chiang MH (2010) J Mater Sci 21:844. doi: 10.1007/s10854-009-0005-2 Google Scholar
  20. 20.
    Gao LN, Song SN, Zhai JW, Yao X, Xu ZK (2008) J Cryst Growth 310:1245CrossRefGoogle Scholar
  21. 21.
    He J, Jiang JC, Meletis EI, Liu J, Collins G, Chen CL, Bhalla A (2009) Phil Mag Lett 89:493CrossRefGoogle Scholar
  22. 22.
    He J, Jiang JC, Meletis EI, Liu M, Liu J, Collins G, Ma CR, Chen CL, Bhalla A (2011) Phil Mag Lett 91:361CrossRefGoogle Scholar
  23. 23.
    Taylor DV, Damjanovic D (2000) Appl Phys Lett 76:1615CrossRefGoogle Scholar
  24. 24.
    Liu M, Ma CR, Collins G, Liu J, Chen CL, Shui L, Wang H, Dai C, Lin Y, He J, Jiang JC, Meletis EI, Zhang QY (2010) Cryst Growth Des 10:4221CrossRefGoogle Scholar
  25. 25.
    Chen CL, Garrett T, Lin Y, Jiang JC, Meletis EI, Miranda FA, Zhang Z, Chu WK (2002) Integr Ferroelectrics 42:165CrossRefGoogle Scholar
  26. 26.
    Jiang JC, Lin Y, Chen CL, Chu CW, Meletis EI (2002) J Appl Phys 91:3188CrossRefGoogle Scholar
  27. 27.
    Jiang JC, He J, Meletis EI, Chen CL, Lin Y, Horwitz J, Jacobson AJ (2009) Thin Solid Films 518:147CrossRefGoogle Scholar
  28. 28.
    Yuan Z, Lin Y, Weaver J, Chen X, Chen CL, Subramanyam G, Jiang JC, Meletis EI (2005) Appl Phys Lett 87:152901CrossRefGoogle Scholar
  29. 29.
    Kim SS, Je JH (1999) J Mater Res 14:3734CrossRefGoogle Scholar
  30. 30.
    Kim S, Hishita S, Kang YM, Baikb S (1995) J Appl Phys 78:5604CrossRefGoogle Scholar
  31. 31.
    Kim S, Park Y, Kang Y, Park W, Baik S, Gruverman A (1998) Thin Solid Films 312:249CrossRefGoogle Scholar
  32. 32.
    Fang Y, Sakhalkar VR, He J, Jiang HQ, Jiang JC, Meletis EI (2011) J Nano Res 14:83CrossRefGoogle Scholar
  33. 33.
    Jiang JC, Meletis EI, Yuan Z, Chen CL (2007) Appl Phys Lett 90:051904CrossRefGoogle Scholar
  34. 34.
    Jiang JC, He J, Meletis EI, Liu J, Yuan Z, Chen CL (2008) J Nano Res 3:59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. He
    • 1
  • H. Q. Jiang
    • 1
  • J. C. Jiang
    • 1
  • E. I. Meletis
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations