Journal of Materials Science

, Volume 47, Issue 6, pp 2600–2606 | Cite as

Effect of compatibility between europium complexes and styrene monomer on preparation of europium-encapsulated microspheres by dispersion polymerization

  • Lijuan Wang
  • Xin Wang
  • Tongxin Wang
  • Zhijia Hu
  • Gang Zou
  • Qijin Zhang


Two europium organic complexes of Eu(DBM)3Phen (DBM = dibenzoylmethane, Phen = 1,10-phenanthroline) and Eu(TTA)3·2H2O (TTA = 2-thenoyltrifluoroacetone) with different structures are successfully encapsulated into polystyrene (PSt) microspheres by in situ dispersion polymerization. These fluorescent microspheres are monodisperse and spherical in shape with the homogeneous distribution of europium complexes in the polymer matrix, as investigated by field emission scanning electron microscopy and confocal laser scanning microscopy. The europium content in the microspheres is measured by inductively coupled plasma atomic emission spectrometer. It is shown that the compatibility of the europium complex with the styrene monomer has a great impact upon the europium content in the PSt microspheres by dispersion polymerization. As the complex amount increases, the europium content in the microspheres containing Eu(DBM)3Phen increases, while that in the microspheres containing Eu(TTA)3·2H2O first increases and then reaches a saturated value at a high addition amount. Fluorescence properties indicate that the PSt polymer is a valuable matrix for improving the emission intensity of Eu(DBM)3Phen yet not an ideal matrix for Eu(TTA)3·2H2O, which is demonstrated by the measurement of fluorescence lifetime.


Encapsulation Efficiency Polymer Particle Fluorescence Property Dispersion Polymerization Lanthanide Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is supported by the National Natural Science Foundation of China (No. 21074123, 91027024 and 50973101), the Chinese Academy of Sciences (kjcx3.sywH02 and kjcx2-yw-m11), and China Postdoctoral Science Foundation (No: 20100470038). The authors gratefully acknowledge the financial support and wish to express their thanks to the referees for critically reviewing the manuscript and making important suggestions.


  1. 1.
    Zako T, Nagata H, Terada N, Sakono M, Soga K, Maeda M (2008) J Mater Sci 43:5325. doi: 10.1007/s10853-008-2776-x CrossRefGoogle Scholar
  2. 2.
    Long Y, Zhang ZL, Yan XM, Xing JC, Zhang KY, Huang JX et al (2010) Anal Chim Acta 665:63CrossRefGoogle Scholar
  3. 3.
    Generalova AN, Sizova SV, Zdobnova TA, Zarifullina MM, Artemyev MV, Baranov AV et al (2011) Nanomedicine 6:195CrossRefGoogle Scholar
  4. 4.
    Wu J, Ye ZQ, Wang GL, Jin DY, Yuan JL, Guan YF et al (2009) J Mater Chem 19:1258CrossRefGoogle Scholar
  5. 5.
    Chandra S, Das P, Bag S, Laha D, Pramanik P (2011) Nanoscale 3:1533CrossRefGoogle Scholar
  6. 6.
    Bally M, Dhumpa R, Voros J (2009) Biosens Bioelectron 24:1195CrossRefGoogle Scholar
  7. 7.
    Vancaeyzeele C, Ornatsky O, Baranov V, Shen L, Abdelrahman A, Winnik MA (2007) J Am Chem Soc 129:13653CrossRefGoogle Scholar
  8. 8.
    Terai T, Kikuchi K, Iwasawa SY, Kawabe T, Hirata Y, Urano Y et al (2006) J Am Chem Soc 128:6938CrossRefGoogle Scholar
  9. 9.
    Zhang J, Fu Y, Lakowicz JR (2009) J Phys Chem C 113:19404CrossRefGoogle Scholar
  10. 10.
    Sheng K, Yan B (2009) J Photochem Photobiol A 206:140CrossRefGoogle Scholar
  11. 11.
    Yan B, Zhu HX (2007) J Fluoresc 17:331CrossRefGoogle Scholar
  12. 12.
    Tao XD, Zhang R, Gao ZG, Satoh T, Kakuchi T, Duan Q (2011) J Mater Sci 46:6396. doi: 10.1007/s10853-011-5588-3 CrossRefGoogle Scholar
  13. 13.
    Mitsui T, Wakayama Y, Onodera T, Hayashi T, Ikeda N, Sugimoto Y et al (2010) Adv Mater 22:3022CrossRefGoogle Scholar
  14. 14.
    Ramirez LP, Antonietti M, Landfester K (2006) Macromol Chem Phys 207:160CrossRefGoogle Scholar
  15. 15.
    Hauser CP, Thielemann DT, Adlung M, Wickleder C, Roesky PW, Weiss CK et al (2011) Macromol Chem Phys 212:286CrossRefGoogle Scholar
  16. 16.
    Ando K, Kawaguchi H (2005) J Coll Interface Sci 285:619CrossRefGoogle Scholar
  17. 17.
    Thickett SC, Abdelrahman AI, Ornatsky O, Bandura D, Baranov V, Winnik MA (2010) J Anal Atom Spectrom 25:269CrossRefGoogle Scholar
  18. 18.
    Hu J, Zhao H, Zhang QJ, He WD (2003) J Appl Polym Sci 89:1124CrossRefGoogle Scholar
  19. 19.
    Tamaki K, Shimomura M (2002) Int J Nanosci 1:533CrossRefGoogle Scholar
  20. 20.
    Ishizaka T, Kasai H, Nakanishi H (2009) J Mater Sci 44:166. doi: 10.1007/s10853-008-3110-3 CrossRefGoogle Scholar
  21. 21.
    Tamaki K, Yabu H, Isoshima T, Hara A, Shimomura A (2006) Coll Surf A 284:355CrossRefGoogle Scholar
  22. 22.
    Abdelrahman AI, Dai S, Thickett SC, Ornatsky O, Bandura D, Baranov V et al (2009) J Am Chem Soc 131:15276CrossRefGoogle Scholar
  23. 23.
    Qi SA, Yin WT (2011) J Mater Sci 46:5288. doi: 10.1007/s10853-011-5468-x CrossRefGoogle Scholar
  24. 24.
    Bamnolker H, Margel S (1996) J Polym Sci Pol Chem 34:1857CrossRefGoogle Scholar
  25. 25.
    Ho CH, Chen SA, Amiridis MD, VanZee JW (1997) J Polym Sci Pol Chem 35:2907CrossRefGoogle Scholar
  26. 26.
    Liu QQ, Wang L, Xiao AG, Yu HJ, Tan QH, Ding JH et al (2008) Macromol Symp 261:113CrossRefGoogle Scholar
  27. 27.
    Zhang F, Cao L, Yang W (2010) Macromol Chem Phys 211:744CrossRefGoogle Scholar
  28. 28.
    Zhang ZL, Long Y, Pan JB, Yan XM (2010) J Mater Chem 20:1179CrossRefGoogle Scholar
  29. 29.
    Liu QH, Liu J, Guo JC, Yan XL, Wang DH, Chen L et al (2009) J Mater Chem 19:2018CrossRefGoogle Scholar
  30. 30.
    Hu H, Larson RG (2004) Langmuir 20:7436CrossRefGoogle Scholar
  31. 31.
    Melby LR, Rose NJ, Abramson E, Caris JC (1964) J Am Chem Soc 86:5117CrossRefGoogle Scholar
  32. 32.
    Binnemans K, Lenaerts P, Driesen K, Gorller-Walrand C (2004) J Mater Chem 14:191CrossRefGoogle Scholar
  33. 33.
    Behrendt JM, Afzaal M, Alexander LM, Bradley M, Hine AV, Nagel D et al (2009) J Mater Chem 19:215CrossRefGoogle Scholar
  34. 34.
    Watarai H, Ogawa K, Suzuki N (1993) Anal Chim Acta 277:73CrossRefGoogle Scholar
  35. 35.
    Raj DBA, Francis B, Reddy MLP, Butorac RR, Lynch VM, Cowley AH (2010) Inorg Chem 49:9055CrossRefGoogle Scholar
  36. 36.
    Bradley M, Ashokkumar M, Grieser F (2003) J Am Chem Soc 125:525CrossRefGoogle Scholar
  37. 37.
    Binnemans K (2001) In: Gschneidner KA, Bünzli JJCG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths, vol 35. Elsevier BV, AmsterdamGoogle Scholar
  38. 38.
    Supkowski RM, Horrocks WD (2002) Inorg Chim Acta 340:44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lijuan Wang
    • 1
  • Xin Wang
    • 1
  • Tongxin Wang
    • 1
  • Zhijia Hu
    • 1
  • Gang Zou
    • 1
  • Qijin Zhang
    • 1
  1. 1.CAS Key Laboratory of Soft Matter Chemistry, Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations