Journal of Materials Science

, Volume 47, Issue 6, pp 2548–2558 | Cite as

High performance hybrids based on a novel incompletely condensed polyhedral oligomeric silsesquioxane and bismaleimide resin with improved thermal and dielectric properties

  • Li Zeng
  • Guozheng Liang
  • Aijuan Gu
  • Li Yuan
  • Dongxian Zhuo
  • Jiang-tao Hu


A novel kind of incompletely condensed polyhedral oligomeric silsesquioxane (TAP-POSS) containing allyl groups was successfully synthesized, and its structure was characterized by fourier transform infrared, nuclear magnetic resonance (1H-NMR and 29Si-NMR) and X-ray diffraction. In addition, TAP-POSS was hybridized with 2,2′-diallylbisphenol A (DBA)-modified 4,4′-bismaleimidodiphenylmethane (BDM) resin to develop a new kind of hybrids with simultaneously improved thermal stability and dielectric properties. Compared with BDM/DBA resin, the BDM/DBA/TAP-POSS hybrids have obviously increased thermal resistance reflected by the increased glass transition temperature (T g) and char yield at high temperature. For example, the T g of modified BDM/DBA resin with only 3.0 wt% TAP-POSS is 330 °C, which is 36 °C higher than that of pure BDM/DBA resin. On the other hand, the dielectric properties over wide frequency and temperature ranges are thoroughly investigated, and results show that the dielectric constant and loss of all hybrids are not only lower than those of BDM/DBA resin over the whole frequency and temperature ranges tested, but also exhibit smaller dependence on temperature and frequency. These phenomena can be explained from the variety of cross-linked structure induced by the presence of TAP-POSS. The outstanding integrated properties of BDM/DBA/TAP-POSS hybrids suggest that TAP-POSS has advantages over conventional POSS, thus the method proposed herein is a new approach to develop high performance structural/functional materials for cutting-edge industries.


Dielectric Constant Dielectric Property Dielectric Loss Dynamic Mechanical Analysis Cyanate Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the National Natural Science Foundation of China (50873073, 20974076), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Major Program of Natural Science Fundamental Research Project of Jiangsu Colleges and Universities (11KJA43001), ‘‘Qing Lan Project’’ (2008) of Jiangsu Province in China, and Suzhou Applied Basic Research Program (SYG201141) for financially supporting this project.


  1. 1.
    Hu JT, Gu AJ, Liang GZ, Zhuo DX, Yuan L (2011) Express Polym Lett 5:558CrossRefGoogle Scholar
  2. 2.
    Ahner N, Schulz SE, Blaschta F, Rennau M (2007) Microelectron Eng 84:2606CrossRefGoogle Scholar
  3. 3.
    Karad SK, Attwood D, Jones FR (2005) Composites 36:764CrossRefGoogle Scholar
  4. 4.
    Pankow O, Gudrun SN (2004) Macromol Mater Eng 289:990CrossRefGoogle Scholar
  5. 5.
    Mamunya YP, Iurzhenko MV, Lebedev EV, Ischenko SS, Boiteux G, Seytre G (2007) J Non-Cryst Solids 353:4288CrossRefGoogle Scholar
  6. 6.
    Ren PG, Liang GZ, Zhang ZP, Lu T (2006) Composites 37:46CrossRefGoogle Scholar
  7. 7.
    Li QF, Xu YH, Yoon JS, Chen GX (2011) J Mater Sci 46:2324. doi: 10.1007/s10853-010-5077-0 CrossRefGoogle Scholar
  8. 8.
    Lim SK, Hong EP, Song YH, Choi HJ, Chin IJ (2010) J Mater Sci 45:5984. doi: 10.1007/s10853-010-4446-z CrossRefGoogle Scholar
  9. 9.
    Zhang BY, Li M, Chen XB (2007) J Mater Sci 42:9170. doi: 10.1007/s10853-007-1920-3 CrossRefGoogle Scholar
  10. 10.
    Wooster TJ, Abrol S, Hey JM, MacFarlane DR (2004) Composites 35:75Google Scholar
  11. 11.
    Rajasekaran R, Alagar M, Karikal CC (2008) Express Polym Lett 2:339CrossRefGoogle Scholar
  12. 12.
    Fang ZP, Shi HH, Gu AJ, Feng Y (2007) J Mater Sci 42:4603. doi: 10.1007/s10853-006-0543-4 CrossRefGoogle Scholar
  13. 13.
    Seino M, Hayakawa T, Ishida Y, Kakimoto M (2006) Macromolecules 39:3473CrossRefGoogle Scholar
  14. 14.
    Nagendiran S, Alagar M, Hamerton I (2010) Acta Mater 58:3345CrossRefGoogle Scholar
  15. 15.
    Huang JM, Kuo SW, Huang HJ, Wang YX, Chen YT (2009) J Appl Polym Sci 111:628Google Scholar
  16. 16.
    Monticelli O, Waghmare P, Chincarini A (2009) J Mater Sci 44:1764. doi: 10.1007/s10853-009-3281-6 CrossRefGoogle Scholar
  17. 17.
    Crivello JV, Mallk R (1997) J Polym Sci 35:407Google Scholar
  18. 18.
    Tamaki R, Choi J, Laine RM (2003) Chem Mater 15:793CrossRefGoogle Scholar
  19. 19.
    Zhang CX, Babonneau F, Bouhomme C, Laine RM, Soles CL, Hristov HA, Yee AF (1998) J Am Chem Soc 120:8380CrossRefGoogle Scholar
  20. 20.
    Wang YZ, Tsai HS, Ji ZY, Chen WY (2007) J Mater Sci 42:7611. doi: 10.1007/s10853-007-1845-x CrossRefGoogle Scholar
  21. 21.
    Huang FW, Rong ZX, Shen XN, Huang FR, Du L, Li ZP (2008) Polym Eng Sci 48:1022CrossRefGoogle Scholar
  22. 22.
    Deng JJ, Polidan JT, Hottle JR, Farmer-Creely CE, Viers BD, Esker AR (2002) J Am Chem Soc 124:15194CrossRefGoogle Scholar
  23. 23.
    Du WJ, Shan JJ, Wu YX, Xu RW, Yu DS (2010) Mater Des 31:1720CrossRefGoogle Scholar
  24. 24.
    He QL, Song L, Hu Y, Zhou S (2009) J Mater Sci 44:1308. doi: 10.1007/s10853-009-3266-5 CrossRefGoogle Scholar
  25. 25.
    Verker R, Grossman E, Gouzman I, Eliaz N (2009) Compos Sci Technol 69:2178CrossRefGoogle Scholar
  26. 26.
    Zhang YD, Lee S, Yoonessi M, Liang KW, Pittman CU (2006) Polymer 47:2984CrossRefGoogle Scholar
  27. 27.
    Liang KW, Li GZ, Toghiani H, Koo JH, Pittman CU Jr (2006) Chem Mater 18:301CrossRefGoogle Scholar
  28. 28.
    Gu AJ (2006) Compos Sci Technol 66:1749CrossRefGoogle Scholar
  29. 29.
    Devi KA, Nair CPR, Ninan KN (2007) J Appl Polym Sci 106:1192CrossRefGoogle Scholar
  30. 30.
    Ni Y, Zheng SX (2007) J Polym Sci 45:1247Google Scholar
  31. 31.
    Koh K, Sugiyama S, Morinaga T, Ohno K, Tsujii Y, Fukuda T, Yamahiro M, Iijima T, Oikawa H, Watanabe K, Miyashita T (2005) Macromolecules 38:1264CrossRefGoogle Scholar
  32. 32.
    DW LEE, Kawakami Y (2007) Polym J 39:230CrossRefGoogle Scholar
  33. 33.
    Rozenberg BA, Dzhavadyan EA, Morgan R, Shin E (2002) Polym Adv Technol 13:837CrossRefGoogle Scholar
  34. 34.
    Zhang BF, Wang ZG, Zhang X (2009) Polymer 50:817CrossRefGoogle Scholar
  35. 35.
    Anuradha G, Sarojadevi M, Sundararajan PR (2008) J Appl Polym Sci 110:517CrossRefGoogle Scholar
  36. 36.
    Bussu G, Lazzeri A (2006) J Mater Sci 41:6072. doi: 10.1007/s10853-006-0694-3 CrossRefGoogle Scholar
  37. 37.
    Liu YR, Huang YD, Liu L (2006) Polym Degrad Stab 91:2731CrossRefGoogle Scholar
  38. 38.
    Duan JK, Kim C, Yun Z, Jiang PK (2008) J Appl Polym Sci 110:3096CrossRefGoogle Scholar
  39. 39.
    Fan J, Hu X, Yue CY (2003) J Polym Sci 41:1123Google Scholar
  40. 40.
    Huang PZ, Gu AJ, Liang GZ, Yuan L (2011) J Appl Polym Sci 121:2113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina

Personalised recommendations