Skip to main content
Log in

Measuring adhesion forces between model polysaccharide films and PLA bead to mimic molecular interactions in flax/PLA biocomposite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural fiber-reinforced polymers or biocomposites are becoming increasingly popular as an environment friendly alternative to traditional glass fiber-reinforced thermoplastics. The mechanical properties of reinforced biocomposites, such as flax/polylactic acid (PLA), are largely governed by the level of interfacial interactions between the two constituents apart from their intrinsic properties. The hierarchical organization of various polysaccharides present in natural fibers results in complex mechanisms at the interface which are still poorly understood and difficult to analyze through a traditional approach that rely on indirect assessments. The possibility of measuring direct adhesion force between individual particles using the colloidal force microscopy has been exploited here by developing an experimental set-up in which a micrometer colloidal PLA bead is brought into close contact with molecularly smooth polysaccharide surfaces that mimic the main constituents of flax fibers, cellulose, hemicellulose, and pectins. Adhesion force measurements performed under ambient and low relative humidity conditions indicate that cellulose/PLA is the weakest interface in the biocomposite. Moreover, the results emphasize the important role of water molecules for the more hydrophilic polymers in flax fibers that takes place in the fundamental forces involved in the adhesion phenomena at the biocomposite interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bodros E, Pillin I, Montrelay N, Baley C (2007) Compos Sci Technol 67:462. doi:10.1016/j.compscitech.2006.08.024

    Article  CAS  Google Scholar 

  2. Oksman K, Skrifvars M, Selin J-F (2003) Compo Sci Technol 63:1317. doi:10.1016/s0266-3538(03)00103-9

    Article  CAS  Google Scholar 

  3. Sedan D, Pagnoux C, Smith A, Chotard T (2008) J Eur Ceram Soc 28:183. doi:10.1016/j.jeurceramsoc.2007.05.019

    Article  CAS  Google Scholar 

  4. Le Duigou A, Davies P, Baley C (2011) J Biobased Mater Bioenergy 5:153. doi:10.1166/jbmb.2011.1116

    Article  CAS  Google Scholar 

  5. Arbelaiz A, Cantero G, Fernández B, Mondragon I, Gañán P, Kenny JM (2005) Polym Compos 26:324. doi:10.1002/pc.20097

    Article  CAS  Google Scholar 

  6. Kalia S, Kaith BS, Kaur I (2009) Polym Eng Sci 49:1253. doi:10.1002/pen.21328

    Article  CAS  Google Scholar 

  7. Mohanty AK, Misra M, Drzal LT (2001) Compos Interface 8:313. doi:10.1163/156855401753255422

    Article  CAS  Google Scholar 

  8. Mwaikambo LY, Ansell MP (2002) J Appl Polym Sci 84:2222. doi:10.1002/app.10460

    Article  CAS  Google Scholar 

  9. Balnois E, Bunel F, Baley C, Grohens Y (2007) Compos Interface 14:715. doi:10.1163/156855407782106537

    Article  CAS  Google Scholar 

  10. Raj G, Balnois E, Baley C, Grohens Y (2011) Int J Polym Sci 2011:1. doi:10.1155/2011/503940

    Article  Google Scholar 

  11. Baley C (2002) Composites A 33:939. doi:10.1016/s1359-835x(02)00040-4

    Article  Google Scholar 

  12. Morvan C, Andème-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Plant Physiol Biochem 41:935. doi:10.1016/j.plaphy.2003.07.001

    Article  CAS  Google Scholar 

  13. Pietak A, Korte S, Tan E, Downard A, Staiger MP (2007) Appl Surf Sci 253:3627. doi:10.1016/j.apsusc.2006.07.082

    Article  CAS  Google Scholar 

  14. Le Troëdec M, Rachini A, Peyratout C, Rossignol S, Max E, Kaftan O, Fery A, Smith A (2011) J Colloid Interface Sci 356:303. doi:10.1016/j.jcis.2010.12.066

    Article  Google Scholar 

  15. Raj G, Balnois E, Baley C, Grohens Y (2009) J Scanning Probe Microsc 4:66. doi:10.1166/jspm.2009.1010

    Article  CAS  Google Scholar 

  16. Raj G, Balnois E, Baley C, Grohens Y (2009) Colloid Surf A 352:47. doi:10.1016/j.colsurfa.2009.09.048

    Article  CAS  Google Scholar 

  17. Sczech R, Riegler H (2006) J Colloid Interface Sci 301:376. doi:10.1016/j.jcis.2006.05.021

    Article  CAS  Google Scholar 

  18. Israelachvili JN (1991) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  19. Butt H-J, Cappella B, Kappl M (2005) Surf Sci Rep 59:1. doi:10.1016/j.surfrep.2005.08.003

    Article  CAS  Google Scholar 

  20. Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) J Colloid Interface Sci 232:17. doi:10.1006/jcis.2000.7168

    Article  CAS  Google Scholar 

  21. Cappella B, Dietler G (1999) Surf Sci Rep 34:1. doi:10.1016/s0167-5729(99)00003-5

    Article  CAS  Google Scholar 

  22. Johnson KL, Kendall K, Roberts AD (1971) Proc R Soc Lond A Math Phys Sci 324:301. doi:10.1098/rspa.1971.0141

    Article  CAS  Google Scholar 

  23. Burnham NA, Colton RJ, Pollock HM (1993) Nanotechnology 4:64. doi:10.1088/0957-4484/4/2/002

    Article  CAS  Google Scholar 

  24. Sedin DL, Rowlen KL (2000) Anal Chem 72:2183. doi:10.1021/ac991198c

    Article  CAS  Google Scholar 

  25. Xiao X, Qian L (2000) Langmuir 16:8153. doi:10.1021/la000770o

    Article  CAS  Google Scholar 

  26. Eastman T, Zhu D-M (1996) Langmuir 12:2859. doi:10.1021/la9504220

    Article  CAS  Google Scholar 

  27. Ko J-A, Choi H-J, Ha M-Y, Hong S-D, Yoon H-S (2010) Langmuir 26:9728. doi:10.1021/la100452m

    Article  CAS  Google Scholar 

  28. Baley C, Morvan C, Grohens Y (2005) Macromol Symp 222:195. doi:10.1002/masy.200550425

    Article  CAS  Google Scholar 

  29. Trotzig C, Abrahmsén-Alami S, Maurer FHJ (2007) Polymer 48:3294. doi:10.1016/j.polymer.2007.03.047

    Article  CAS  Google Scholar 

  30. Turner DT, Schwartz A (1985) Polymer 26:757. doi:10.1016/0032-3861(85)90114-4

    Article  CAS  Google Scholar 

  31. Iijima M, Nakamura K, Hatakeyama T, Hatakeyama H (2000) Carbohydr Polym 41:101. doi:10.1016/s0144-8617(99)00116-2

    Article  CAS  Google Scholar 

  32. Lourdin D, Coignard L, Bizot H, Colonna P (1997) Polymer 38:5401. doi:10.1016/S0032-3861(97)00082-7

    Article  CAS  Google Scholar 

  33. Boiko YM, Prud’homme RE (1997) Macromolecules 30:3708. doi:10.1021/ma960002x

    Article  CAS  Google Scholar 

  34. Boiko YM, Prud’homme RE (1999) J Appl Polym Sci 74:825. doi:10.1002/(sici)1097-4628(19991024)74:4<825:aid-app8>3.0.co;2-6

    Article  CAS  Google Scholar 

  35. Grohens Y, Brogly M, Labbe C, David M-O, Schultz J (1998) Langmuir 14:2929. doi:10.1021/la971397w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Balnois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, G., Balnois, E., Helias, MA. et al. Measuring adhesion forces between model polysaccharide films and PLA bead to mimic molecular interactions in flax/PLA biocomposite. J Mater Sci 47, 2175–2181 (2012). https://doi.org/10.1007/s10853-011-6020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6020-8

Keywords

Navigation