Skip to main content
Log in

SBE type cobalt-aluminophosphates (Co/Al ~ 1): synthesis aging effect, detemplation mechanism from coupled TGA/FTIR analyses, and structural stability after detemplation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cobalt-rich SBE-type aluminophosphate (AlPO) microporous solids were prepared by employing different aging periods during the hydrothermal synthesis. According to XRD, SEM, and porosimetry tests, aging for 168 h results in a material with good long-range framework and textural features. The latter were analyzed after careful removal of the structure-directing agent (SDA) or detemplation, which produced a micropore surface area of ca. 600 m2/g, the highest ever reported for an AlPO having a multi-dimensional pore system and the highest cobalt-to-aluminum framework ratio. Coupled TGA/FTIR was employed in an attempt to elucidate the SDA decomposition mechanism in both inert and oxidative environments. Careful analysis confirmed that the latter case results in encapsulation of some of the detemplation species due to structural collapsing. Finally, the structural stability of detemplated material was evaluated in the presence of humidity and ambient air. The results indicate that the framework cobalt appear to readily oxidize upon adsorption of di-oxygen at ambient conditions, leading to an irreversible collapsing of the structure. However, the detemplated microporous solid appears to be stable in the presence of moist inert atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Szostak R (1998) In: Karge GH, Weitkamp J (eds) Molecular sieves—science and technology, vol 1. Elsevier Science, Amsterdam

  2. Helliwell M, Jones RH, Kaucic V, Logar NZ (2005) J Synchrotron Radiat 12:420

    Article  CAS  Google Scholar 

  3. Koroglu HJ, Sarioglan A, Tatlier M, Erdem-Senatalar A, Savasci OT (2002) J Cryst Growth 241:481

    Article  Google Scholar 

  4. Shvets OV, Zukal A, Kasian N, Zilkova N, Cejka J (2008) Chem Eur J 14:10134

    Article  CAS  Google Scholar 

  5. Brar T, France P, Smirniotis PG (2001) Ind Eng Chem Res 40:1133

    Article  CAS  Google Scholar 

  6. Bonilla G, Diaz I, Tsapatsis M, Jeong HK, Lee Y, Vlachos DG (2004) Chem Mater 16:5697

    Article  CAS  Google Scholar 

  7. Bayati B, Babaluo AA, Karimi R (2008) J Eur Ceram Soc 28:2653

    Article  CAS  Google Scholar 

  8. Alfaro S, Rodriguez C, Valenzuela MA, Bosch P (2007) Mater Lett 61:4655

    Article  CAS  Google Scholar 

  9. Alfaro S, Valenzuela MA, Bosch P (2009) J Porous Mater 16:337

    Article  CAS  Google Scholar 

  10. Natarajan S, Mandal S, Mahata P et al (2006) J Chem Sci 118:525

    Article  CAS  Google Scholar 

  11. Gorte RJ, White D (1997) Top Catal 4:57

    Article  CAS  Google Scholar 

  12. Moissette A, Marquis S, Gener I, Bremard C (2002) Phys Chem Chem Phys 4:5690

    Article  CAS  Google Scholar 

  13. Hernandez-Maldonado AJ, Yang RT, Chinn D, Munson CL (2003) Langmuir 19:2193

    Article  CAS  Google Scholar 

  14. Schnabel KH, Finger G, Kornatowski J, Loffler E, Peuker C, Pilz W (1997) Microporous Mater 11:293

    Article  CAS  Google Scholar 

  15. Belen-Cordero DS, Mendez-Gonzalez S, Hernandez-Maldonado AJ (2008) Microporous Mesoporous Mater 109:287

    Article  CAS  Google Scholar 

  16. Montes C, Davis ME, Murray B, Narayana M (1990) J Phys Chem 94:6425

    Article  CAS  Google Scholar 

  17. Kurshev V, Kevan L, Parillo DJ, Pereira C, Kokotailo GT, Gorte RJ (1994) J Phys Chem 98:10160

    Article  CAS  Google Scholar 

  18. Akolekar DB (1995) Zeolites 15:583

    Article  CAS  Google Scholar 

  19. Barrett PA, Sankar G, Catlow CRA, Thomas JM (1995) J Phys Chem Solids 56:1395

    Article  CAS  Google Scholar 

  20. Akolekar DB, Howe RF (1997) J Chem Soc Faraday Trans 93:3263

    Article  CAS  Google Scholar 

  21. Sponer J, Cejka J, Dedecek J, Wichterlova B (2000) Microporous Mesoporous Mater 37:117

    Article  CAS  Google Scholar 

  22. Kornatowski J, Finger G, Schultze D (2002) J Phys Chem A 106:3975

    Article  CAS  Google Scholar 

  23. Tusar NN, Mali G, Arcon I, Kaucic V, Ghanbari-Siahkali A, Dwyer J (2002) Microporous Mesoporous Mater 55:203

    Article  CAS  Google Scholar 

  24. Borges C, Ribeiro MF, Henriques C et al (2004) J Phys Chem B 108:8344

    Article  CAS  Google Scholar 

  25. Kornatowski J (2005) CR Chim 8:561

    Article  CAS  Google Scholar 

  26. Vishnuvarthan M, Murugesan V, Gianotti E, Bertinetti L, Coluccia S, Berlier G (2009) Microporous Mesoporous Mater 123:91

    Article  CAS  Google Scholar 

  27. Zabukovec Logar N, Kaucic V (2006) Acta Chim Sloven 53:117

    Google Scholar 

  28. Ying JY, Mehnert CP, Wong MS (1999) Angew Chem Int Ed 38:56

    Article  CAS  Google Scholar 

  29. Taguchi A, Schuth F (2005) Microporous Mesoporous Mater 77:1

    Article  CAS  Google Scholar 

  30. Bu XH, Feng PY, Stucky GD (1997) Science 278:2080

    Article  CAS  Google Scholar 

  31. Belen-Cordero DS, Kim C, Hwang SJ, Hernandez-Maldonado AJ (2009) J Phys Chem C 113:8035

    Article  CAS  Google Scholar 

  32. Yang RT (1997) Gas separation by adsorption processes. Imperial College Press, River Edge

    Google Scholar 

  33. Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London

    Book  Google Scholar 

  34. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  35. Lippens BC, de Boer JH (1965) J Catal 4:319

    Article  CAS  Google Scholar 

  36. de Boer JH, Linsen BG, Osinga TJ (1965) J Catal 4:643

    Article  Google Scholar 

  37. de Boer JH, Linsen BG, van der Plas T, Zondervan GJ (1965) J Catal 4:649

    Article  Google Scholar 

  38. Ma RH, Zhang H, Prasad V, Dudley M (2002) Cryst Growth Des 2:213

    Article  CAS  Google Scholar 

  39. Miyazaki N, Matsuura Y, Imahase D (2006) J Cryst Growth 289:659

    Article  CAS  Google Scholar 

  40. Hemvichian K, Kim HD, Ishida H (2005) Polym Degrad Stab 87:213

    Article  CAS  Google Scholar 

  41. Bixun W, Yilu F, Shunong F (1995) Acta Phys Chim Sin 11:974

    Google Scholar 

  42. Zhang L, Primera-Pedrozo JN, Hernandez-Maldonado AJ (2010) J Phys Chem C 114:14755

    CAS  Google Scholar 

  43. Cervantes-Uc JM, Cauich-Rodriguez JV, Vazquez-Torres H, Garfias-Mesias LF, Paul DR (2007) Thermochim Acta 457:92

    Article  CAS  Google Scholar 

  44. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, Boston

    Google Scholar 

  45. Bala H, Guo Y, Zhao X et al (2006) Mater Lett 60:494

    Article  Google Scholar 

  46. Blackwell CS, Patton RL (1984) J Phys Chem 88:6135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the National Science Foundation (NSF) under Grant CBET-0546370. We wish to also acknowledge partial support from the Puerto Rico Institute for Functional Nanomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo J. Hernández-Maldonado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabanzo-Olarte, A.C., Maldonado-Avilés, S.M. & Hernández-Maldonado, A.J. SBE type cobalt-aluminophosphates (Co/Al ~ 1): synthesis aging effect, detemplation mechanism from coupled TGA/FTIR analyses, and structural stability after detemplation. J Mater Sci 47, 2127–2135 (2012). https://doi.org/10.1007/s10853-011-6013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6013-7

Keywords

Navigation