Journal of Materials Science

, Volume 47, Issue 5, pp 2127–2135 | Cite as

SBE type cobalt-aluminophosphates (Co/Al ~ 1): synthesis aging effect, detemplation mechanism from coupled TGA/FTIR analyses, and structural stability after detemplation

  • Andrea C. Cabanzo-Olarte
  • Sol M. Maldonado-Avilés
  • Arturo J. Hernández-Maldonado


Cobalt-rich SBE-type aluminophosphate (AlPO) microporous solids were prepared by employing different aging periods during the hydrothermal synthesis. According to XRD, SEM, and porosimetry tests, aging for 168 h results in a material with good long-range framework and textural features. The latter were analyzed after careful removal of the structure-directing agent (SDA) or detemplation, which produced a micropore surface area of ca. 600 m2/g, the highest ever reported for an AlPO having a multi-dimensional pore system and the highest cobalt-to-aluminum framework ratio. Coupled TGA/FTIR was employed in an attempt to elucidate the SDA decomposition mechanism in both inert and oxidative environments. Careful analysis confirmed that the latter case results in encapsulation of some of the detemplation species due to structural collapsing. Finally, the structural stability of detemplated material was evaluated in the presence of humidity and ambient air. The results indicate that the framework cobalt appear to readily oxidize upon adsorption of di-oxygen at ambient conditions, leading to an irreversible collapsing of the structure. However, the detemplated microporous solid appears to be stable in the presence of moist inert atmospheres.


Aging Time Aluminum Isopropoxide Micropore Surface Area Magic Angle Spin Nuclear Magnetic Resonance Nonuniform Temperature Distribution 



Funding for this study was provided by the National Science Foundation (NSF) under Grant CBET-0546370. We wish to also acknowledge partial support from the Puerto Rico Institute for Functional Nanomaterials.


  1. 1.
    Szostak R (1998) In: Karge GH, Weitkamp J (eds) Molecular sieves—science and technology, vol 1. Elsevier Science, AmsterdamGoogle Scholar
  2. 2.
    Helliwell M, Jones RH, Kaucic V, Logar NZ (2005) J Synchrotron Radiat 12:420CrossRefGoogle Scholar
  3. 3.
    Koroglu HJ, Sarioglan A, Tatlier M, Erdem-Senatalar A, Savasci OT (2002) J Cryst Growth 241:481CrossRefGoogle Scholar
  4. 4.
    Shvets OV, Zukal A, Kasian N, Zilkova N, Cejka J (2008) Chem Eur J 14:10134CrossRefGoogle Scholar
  5. 5.
    Brar T, France P, Smirniotis PG (2001) Ind Eng Chem Res 40:1133CrossRefGoogle Scholar
  6. 6.
    Bonilla G, Diaz I, Tsapatsis M, Jeong HK, Lee Y, Vlachos DG (2004) Chem Mater 16:5697CrossRefGoogle Scholar
  7. 7.
    Bayati B, Babaluo AA, Karimi R (2008) J Eur Ceram Soc 28:2653CrossRefGoogle Scholar
  8. 8.
    Alfaro S, Rodriguez C, Valenzuela MA, Bosch P (2007) Mater Lett 61:4655CrossRefGoogle Scholar
  9. 9.
    Alfaro S, Valenzuela MA, Bosch P (2009) J Porous Mater 16:337CrossRefGoogle Scholar
  10. 10.
    Natarajan S, Mandal S, Mahata P et al (2006) J Chem Sci 118:525CrossRefGoogle Scholar
  11. 11.
    Gorte RJ, White D (1997) Top Catal 4:57CrossRefGoogle Scholar
  12. 12.
    Moissette A, Marquis S, Gener I, Bremard C (2002) Phys Chem Chem Phys 4:5690CrossRefGoogle Scholar
  13. 13.
    Hernandez-Maldonado AJ, Yang RT, Chinn D, Munson CL (2003) Langmuir 19:2193CrossRefGoogle Scholar
  14. 14.
    Schnabel KH, Finger G, Kornatowski J, Loffler E, Peuker C, Pilz W (1997) Microporous Mater 11:293CrossRefGoogle Scholar
  15. 15.
    Belen-Cordero DS, Mendez-Gonzalez S, Hernandez-Maldonado AJ (2008) Microporous Mesoporous Mater 109:287CrossRefGoogle Scholar
  16. 16.
    Montes C, Davis ME, Murray B, Narayana M (1990) J Phys Chem 94:6425CrossRefGoogle Scholar
  17. 17.
    Kurshev V, Kevan L, Parillo DJ, Pereira C, Kokotailo GT, Gorte RJ (1994) J Phys Chem 98:10160CrossRefGoogle Scholar
  18. 18.
    Akolekar DB (1995) Zeolites 15:583CrossRefGoogle Scholar
  19. 19.
    Barrett PA, Sankar G, Catlow CRA, Thomas JM (1995) J Phys Chem Solids 56:1395CrossRefGoogle Scholar
  20. 20.
    Akolekar DB, Howe RF (1997) J Chem Soc Faraday Trans 93:3263CrossRefGoogle Scholar
  21. 21.
    Sponer J, Cejka J, Dedecek J, Wichterlova B (2000) Microporous Mesoporous Mater 37:117CrossRefGoogle Scholar
  22. 22.
    Kornatowski J, Finger G, Schultze D (2002) J Phys Chem A 106:3975CrossRefGoogle Scholar
  23. 23.
    Tusar NN, Mali G, Arcon I, Kaucic V, Ghanbari-Siahkali A, Dwyer J (2002) Microporous Mesoporous Mater 55:203CrossRefGoogle Scholar
  24. 24.
    Borges C, Ribeiro MF, Henriques C et al (2004) J Phys Chem B 108:8344CrossRefGoogle Scholar
  25. 25.
    Kornatowski J (2005) CR Chim 8:561CrossRefGoogle Scholar
  26. 26.
    Vishnuvarthan M, Murugesan V, Gianotti E, Bertinetti L, Coluccia S, Berlier G (2009) Microporous Mesoporous Mater 123:91CrossRefGoogle Scholar
  27. 27.
    Zabukovec Logar N, Kaucic V (2006) Acta Chim Sloven 53:117Google Scholar
  28. 28.
    Ying JY, Mehnert CP, Wong MS (1999) Angew Chem Int Ed 38:56CrossRefGoogle Scholar
  29. 29.
    Taguchi A, Schuth F (2005) Microporous Mesoporous Mater 77:1CrossRefGoogle Scholar
  30. 30.
    Bu XH, Feng PY, Stucky GD (1997) Science 278:2080CrossRefGoogle Scholar
  31. 31.
    Belen-Cordero DS, Kim C, Hwang SJ, Hernandez-Maldonado AJ (2009) J Phys Chem C 113:8035CrossRefGoogle Scholar
  32. 32.
    Yang RT (1997) Gas separation by adsorption processes. Imperial College Press, River EdgeGoogle Scholar
  33. 33.
    Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, LondonCrossRefGoogle Scholar
  34. 34.
    Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, DordrechtGoogle Scholar
  35. 35.
    Lippens BC, de Boer JH (1965) J Catal 4:319CrossRefGoogle Scholar
  36. 36.
    de Boer JH, Linsen BG, Osinga TJ (1965) J Catal 4:643CrossRefGoogle Scholar
  37. 37.
    de Boer JH, Linsen BG, van der Plas T, Zondervan GJ (1965) J Catal 4:649CrossRefGoogle Scholar
  38. 38.
    Ma RH, Zhang H, Prasad V, Dudley M (2002) Cryst Growth Des 2:213CrossRefGoogle Scholar
  39. 39.
    Miyazaki N, Matsuura Y, Imahase D (2006) J Cryst Growth 289:659CrossRefGoogle Scholar
  40. 40.
    Hemvichian K, Kim HD, Ishida H (2005) Polym Degrad Stab 87:213CrossRefGoogle Scholar
  41. 41.
    Bixun W, Yilu F, Shunong F (1995) Acta Phys Chim Sin 11:974Google Scholar
  42. 42.
    Zhang L, Primera-Pedrozo JN, Hernandez-Maldonado AJ (2010) J Phys Chem C 114:14755Google Scholar
  43. 43.
    Cervantes-Uc JM, Cauich-Rodriguez JV, Vazquez-Torres H, Garfias-Mesias LF, Paul DR (2007) Thermochim Acta 457:92CrossRefGoogle Scholar
  44. 44.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, BostonGoogle Scholar
  45. 45.
    Bala H, Guo Y, Zhao X et al (2006) Mater Lett 60:494CrossRefGoogle Scholar
  46. 46.
    Blackwell CS, Patton RL (1984) J Phys Chem 88:6135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Andrea C. Cabanzo-Olarte
    • 1
  • Sol M. Maldonado-Avilés
    • 2
  • Arturo J. Hernández-Maldonado
    • 2
  1. 1.Department of ChemistryUniversity of Puerto RicoMayagüezUSA
  2. 2.Department of Chemical EngineeringUniversity of Puerto RicoMayagüezUSA

Personalised recommendations