Journal of Materials Science

, Volume 47, Issue 4, pp 2005–2010 | Cite as

Influence of Y on the phase composition and mechanical properties of as-extruded Mg–Zn–Y–Zr magnesium alloys

  • Jingfeng Wang
  • Pengfei Song
  • Shan Gao
  • Yiyun Wei
  • Fusheng Pan


The influence of Y on the microstructure, phase composition and mechanical properties of the extruded Mg–6Zn–xY–0.6Zr (x = 0, 1, 2, 3 and 4, in wt%) alloys has been investigated and compared by optical microscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometer and tensile testing. The increase in Y content has shown grain refinement effects on the microstructure morphologies of the extruded alloys. However, when the content of Y exceeds 2.2 wt%, the grain refinement effect of the Y is not obvious any more with the increase of the Y content. The quasicrystal I-phase (Mg3YZn6), face-centred cubic structure W-phase (Mg3Y2Zn3) and a long period stacking ordered (LPSO) X-phase (Mg12YZn) can precipitate in different ranges of Y/Zn ratio (in at.%) when the Y content in the Mg–Zn–Y–Zr alloys is varied. Comparison of the mechanical properties of the alloys showed that the different ternary Mg–Zn–Y phases have different strengthening and toughening effects on the Mg–Zn–Y–Zr alloys in the following order: X-phase > I-phase > W-phase > MgZn2.


Magnesium Alloy Ultimate Tensile Strength Alloy Versus Refinement Effect Microstructure Morphology 



The authors are grateful for the financial support from Joint Foundation, National Natural Science Foundation Commission of China and China Academy of Engineering Physics (Grant No. 10876045), National Basic Research Program of China (Grant No. 2007CB613704), National Natural Science Foundation of China (Project No. 50725413), Project supported by Chongqing Science and Technology Commission (Project No. CSTS2008AB4114) and Fundamental Research Funds for the Central Universities (Project No. CDJZR10130012).


  1. 1.
    Kojima Y, Aizawa T, Kamado S (2003) Mater Sci Forum 419–422:3CrossRefGoogle Scholar
  2. 2.
    Schaller R (2003) J Alloys Compd 355:131CrossRefGoogle Scholar
  3. 3.
    James DW (1969) Mater Sci Eng 4:1CrossRefGoogle Scholar
  4. 4.
    Li-Hua L, Xiu-Qin Z, Xian-Feng L, Hao-Wei W, Nai-Heng MA (2007) Mater Lett 61(1):231CrossRefGoogle Scholar
  5. 5.
    Hu XS, Wu K, Zheng MY, Gan WM, Wang XJ (2007) Mater Sci Eng A 452/453:374Google Scholar
  6. 6.
    Dubois JM, Plaindoux P, Berlin-Ferre E, Tamura N, Sordelet DJ (1997) Proceedings of the sixth international conference on quasicrystals. World Scientific, SingaporeGoogle Scholar
  7. 7.
    Pierce FS, Poon SJ, Guo Q (1993) Science 261(5122):737CrossRefGoogle Scholar
  8. 8.
    Hagihara K, Yokotani N, Umakoshi Y (2010) Intermetallics 18:267CrossRefGoogle Scholar
  9. 9.
    Rao JC, Song M, Furuya K, Yoshimoto S, Yamasaki M, Kawamura Y (2006) J Mater Sci 41:2573. doi: 10.1007/s10853-006-7782-2 CrossRefGoogle Scholar
  10. 10.
    Boehlert CJ (2007) J Mater Sci 42:3675. doi: 10.1007/s10853-006-1352-5 CrossRefGoogle Scholar
  11. 11.
    Popov I, Starosvetsky D, Shechtman D (2000) J Mater Sci 35:1.  10.1023/A:1004734725783 CrossRefGoogle Scholar
  12. 12.
    Wang Y, Zhang Y, Zeng X, Ding W (2006) J Mater Sci 41:3603.  10.1007/s10853-005-5564-x CrossRefGoogle Scholar
  13. 13.
    Song G, StJohn D (2002) J Light Met 2:1CrossRefGoogle Scholar
  14. 14.
    StJohn DH, Qian M, Easton MA, Cao P, Hildebrand Z (2005) Metall Mater Trans A 36:1669CrossRefGoogle Scholar
  15. 15.
    Xu DK, Liu L, Xu YB, Han EH (2006) J Alloys Compd 426:155CrossRefGoogle Scholar
  16. 16.
    Luo Z, Zhang S, Tang Y, Zhao D (1994) Scr Metall Mater 30(4):393CrossRefGoogle Scholar
  17. 17.
    Luo ZP, Zhang SQ, Tang YL, Zhao DS (1995) Scr Metall Mater 32(9):1411CrossRefGoogle Scholar
  18. 18.
    Abe E, Kawamura Y, Hayashi K, Inoue A (2002) Acta Mater 50:3845CrossRefGoogle Scholar
  19. 19.
    Alok S, Watanabe M, Kato A, Tsai AP (2005) Mater Sci Eng A 397:22Google Scholar
  20. 20.
    Bae DH, Kim Y, Kim IJ (2006) Mater Lett 60:2190CrossRefGoogle Scholar
  21. 21.
    Xu DK, Liu L, Xu YB, Han EH (2008) Acta Mater 56:985CrossRefGoogle Scholar
  22. 22.
    Lee JY, Lim HK, Kim DH, Kim WT, Kim DH (2007) Mater Sci Eng A 449–451:987Google Scholar
  23. 23.
    Somekawa H, Singh A, Mukai T (2007) Scr. Mater 56:1091CrossRefGoogle Scholar
  24. 24.
    Bae DH, Kim SH, Kim DH, Kim WT (2002) Acta Mater 50:2343CrossRefGoogle Scholar
  25. 25.
    Alok S, Watanabe M, Kato A, Tsai AP (2004) Mater Sci Eng A 385:382Google Scholar
  26. 26.
    Xu DK, Liu L, Xu YB, Han EH (2007) Mater Sci Eng A 443:248CrossRefGoogle Scholar
  27. 27.
    Xu DK, Tang WN, Liu L, Xu YB, Han EH (2007) J Alloys Compd 432:129CrossRefGoogle Scholar
  28. 28.
    Padezhnova EM, Mel’nik EV, Miliyevskiy RA et al (1982) Russ Metall (Metally) 4:185 (English Translation)Google Scholar
  29. 29.
    Luo ZP, Zhang SQ (1993) J Mater Sci Lett 12:1490Google Scholar
  30. 30.
    Zhu YM, Morton AJ, Nie JF (2010) Acta Mater 58:2936CrossRefGoogle Scholar
  31. 31.
    Aditi D, Waghmare UV, Ramamurty U (2008) Acta Mater 56:2531CrossRefGoogle Scholar
  32. 32.
    Hagihara K, Yokotani N, Kinoshita A, Sugino Y, Yamamoto H, Yamasaki M et al (2009) Mater Res Soc Symp Proc 1128:U05-53:1Google Scholar
  33. 33.
    Hagihara K, Yokotani N, Umakoshi Y (2010) Intermetallics 18(2):267CrossRefGoogle Scholar
  34. 34.
    Wang J, Gao S, Song P, Huang X, Shi Z, Pan F (2011) J Alloys Compd 509:8567CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jingfeng Wang
    • 1
    • 2
  • Pengfei Song
    • 1
  • Shan Gao
    • 1
  • Yiyun Wei
    • 1
  • Fusheng Pan
    • 1
    • 2
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingPeople’s Republic of China
  2. 2.National Engineering Research Center for Magnesium AlloysChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations