Journal of Materials Science

, Volume 47, Issue 4, pp 2000–2004 | Cite as

An investigation on hot-cracking mechanism of Sr addition into Mg–6Al–0.5Mn alloy

  • Shuang-Shou Li
  • Bin Tang
  • Xin-Yan Jin
  • Da-Ben Zeng


The hot-tearing susceptibility of Mg–6Al–0.5Mn alloy decreased with the increasing Sr content (≤0.2 wt%). The related mechanism is described as follows: Sr refines the grain and reduces the tendency of divorced eutectic; Sr decreases the eutectic temperature and results in higher intergranular strength. Both of the above reasons could improve the filling capacity of the melt, resulting in the best hot-tearing-resistant property of the alloy.


Magnesium Alloy Eutectic Reaction Creep Strength Liquid Film Thickness Filling Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schumann S, Friedrich F (2000) In: Aghion E, Eliezer D (eds) Proceedings of the 2nd Israeli international conference on magnesium science & technology, Dead Sea, p 23Google Scholar
  2. 2.
    Hu H, Yu A, Li NY (2003) Mater Manuf Process 18:687. doi: 10.1081/AMP-120024970 CrossRefGoogle Scholar
  3. 3.
    Koike S, Washizu K, Tanaka S et al (2000) In: SAE 2000 world congress, Detroit, p 1Google Scholar
  4. 4.
    Zhang Z, Couture A, Luo A (1998) Scripta Mater 39:45. doi: 10.1016/S1359-6462(98)00122-5 CrossRefGoogle Scholar
  5. 5.
    Lu YZ, Wang QD, Ding WJ et al (2000) Mater Lett 44:265. doi: 10.1016/S0167-577X(00)00041-0 CrossRefGoogle Scholar
  6. 6.
    Wang XS, Liang F, Fan JH (2006) Philos Mag 86:1581. doi: 10.1080/14786430500401070 CrossRefGoogle Scholar
  7. 7.
    Suzuki M, Sato H, Maruyama K et al (1998) Mater Sci Eng A 252:248. doi: 10.1016/S0921-5093(98)00662-5 CrossRefGoogle Scholar
  8. 8.
    Mordike BL, Ebert T (2001) Mater Sci Eng A 302:37. doi: 10.1016/S0921-5093(00)01351-4 CrossRefGoogle Scholar
  9. 9.
    Li PJ, Tang B, Kandalova EG (2005) Mater Lett 59:671. doi: 10.1016/j.matlet.2004.11.006 CrossRefGoogle Scholar
  10. 10.
    Tang B, Wang XS, Li SS et al (2005) Mater Sci Technol 21:574. doi: 10.1179/174328405X43180 CrossRefGoogle Scholar
  11. 11.
    Yuan GY, Liu ZL, Wang QD et al (2002) Mater Lett 56:53. doi: 10.1016/S0167-577X(02)00417-2 CrossRefGoogle Scholar
  12. 12.
    Zheng WC, Li SS, Tang B et al (2006) J Rare Earths 24:346. doi: 10.1016/S1002-0721(06)60122-1 CrossRefGoogle Scholar
  13. 13.
    Argo D, Pekguleryuz M, Labelle P et al (2002) In: Kaplan HL (ed) TMS annual meeting, Seattle, p 87Google Scholar
  14. 14.
    Forakis P, Richard E, Argo D (2002) In: Kaplan HL (ed) TMS annual meeting, Seattle, p 49Google Scholar
  15. 15.
    Pekguleryuz M, Labelle P, Argo D et al (2003) In: Kaplan HI (ed) Magnesium technology 2003, TMS Annual Meeting, , Seattle, p 201Google Scholar
  16. 16.
    Clyne TW, Davies GJ (1981) Br Foundrym 74:65Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shuang-Shou Li
    • 1
  • Bin Tang
    • 1
  • Xin-Yan Jin
    • 2
  • Da-Ben Zeng
    • 3
  1. 1.Fundamental Industry Training CenterTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.State Key Laboratory of Development and Application Technology of Automotive SteelsShanghaiPeople’s Republic of China
  3. 3.Department of Mechanical EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations