Journal of Materials Science

, Volume 47, Issue 4, pp 1910–1919 | Cite as

Few-layer nano-graphene structures with large surface areas synthesized on a multifunctional Fe:Mo:MgO catalyst system

  • Enkeleda Dervishi
  • Alexandru R. Biris
  • Fumiya Watanabe
  • Jean L. Umwungeri
  • Thikra Mustafa
  • Joshua A. Driver
  • Alexandru S. Biris


We present the synthesis of nano-graphene structures with large surface areas and high purity over a high-yield Fe:Mo:MgO catalytic system. Two different hydrocarbon sources, acetylene and methane, were used, and their role in determining the size and morphology of the few-layer graphene sheets was studied. In addition, varying the active metal loading of the catalyst system influenced the formation and type of the resulting carbon nano-structures, e.g., carbon nanotubes or few-layer graphene. Growth of nano-graphene sheets was detected after only 5-min reaction time over this multifunctional catalytic system. High purity and crystalline graphene structures were synthesized indicating another advantage of using this particular catalyst system. This catalytic chemical vapor deposition can be scaled up for large-scale few-layer graphene production.


Graphene Sheet Transmission Electron Microscopy Analysis Catalyst System Atomic Force Microscopy Analysis Transmission Electron Microscopy Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support from the Arkansas Science & Technology Authority (Grant # 08-CAT-03) and the Department of Energy (DE-FG36-06GO86072) and National Science Foundation (NSF/EPS-1003970) is greatly appreciated. The editorial assistance of Dr. Marinelle Ringer is also acknowledged.


  1. 1.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183CrossRefGoogle Scholar
  2. 2.
    Meyer JC, Geim AK, Katsnelson MI et al (2007) Nat Mater 446:60CrossRefGoogle Scholar
  3. 3.
    Novoselov KS, Geim AK, Morozov et al (2004) Science 306:666CrossRefGoogle Scholar
  4. 4.
    Jung I, Dikin DA, Piner RD et al (2008) Nano Lett 8:4283CrossRefGoogle Scholar
  5. 5.
    Ghosh S, Calizo I, Teweldebrhan D et al (2008) Appl Phys Lett 92:151911CrossRefGoogle Scholar
  6. 6.
    Neto AHC, Guinea F, Peres NMR et al (2009) Rev Modern Phys 81:109CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Ali SF, Dervishi E et al (2010) ACS Nano 4:3181CrossRefGoogle Scholar
  8. 8.
    Sun X, Liu Z, Welsher K et al (2008) Nano Res 1:203CrossRefGoogle Scholar
  9. 9.
    Liu Z, Robinson JT, Sun X et al (2008) J Am Chem Soc 130:10876CrossRefGoogle Scholar
  10. 10.
    Chen Z, Lin YM, Rooks MJ et al (2007) Phys E 40:228CrossRefGoogle Scholar
  11. 11.
    Barone V, Hod O, Scuseria GE (2006) Nano Lett 6:2748CrossRefGoogle Scholar
  12. 12.
    Kim KS, Zhao Y, Jang H et al (2009) Nature 457:706CrossRefGoogle Scholar
  13. 13.
    Wang X, Zhi L, Mullen K (2008) Nano Lett 8:323CrossRefGoogle Scholar
  14. 14.
    Vivekchand SRC, Rout CS, Subrahmanyam KS et al (2008) J Chem Sci 120:9CrossRefGoogle Scholar
  15. 15.
    Katsnelson MI (2007) Mater Today 10:20CrossRefGoogle Scholar
  16. 16.
    Geim AK, MacDonald AH (2007) Phys Today 60:35CrossRefGoogle Scholar
  17. 17.
    Treier M, Pignedoli CA, Laino T et al (2011) Nat Chem 3:61CrossRefGoogle Scholar
  18. 18.
    Kosynkin DV, Lu W, Sinitskii A et al (2011) ACS Nano 5:968CrossRefGoogle Scholar
  19. 19.
    Wang JJ, Zhu MY, Outlaw RA et al (2004) Carbon 42:2867CrossRefGoogle Scholar
  20. 20.
    Hiramatsu M, Shiji K, Amano H et al (2004) Appl Phys Lett 84:4708CrossRefGoogle Scholar
  21. 21.
    Rummeli MH, Kramberger C, Gruneis A et al (2007) Chem Mater 19:4105CrossRefGoogle Scholar
  22. 22.
    Rummeli MH, Bachmatiuk A, Scott A et al (2010) ACS Nano 4:4206CrossRefGoogle Scholar
  23. 23.
    Zhu M, Wang J, Outlaw RA et al (2007) Diam Relat Mater 16:196CrossRefGoogle Scholar
  24. 24.
    Wang X, You H, Liu F et al (2009) Chem Vapor Dep 15:53CrossRefGoogle Scholar
  25. 25.
    Dervishi E, Li Z, Watanabe F et al (2009) Chem Commun 27:4061CrossRefGoogle Scholar
  26. 26.
    Dervishi E, Li Z, Watanabe F et al (2010) Diam Relat Mater 19:67CrossRefGoogle Scholar
  27. 27.
    Biris AR, Lupu D, Dervishi E et al (2008) Phys Lett A 372:6416CrossRefGoogle Scholar
  28. 28.
    Dervishi E, Li Z, Watanabe F et al (2009) J Mater Chem 19:3004CrossRefGoogle Scholar
  29. 29.
    Biris AR, Lupu D, Gruneis A et al (2008) Chem Mater 20:3466CrossRefGoogle Scholar
  30. 30.
    Biris AR, Li Z, Dervishi E et al (2008) Phys Lett A 372:3051CrossRefGoogle Scholar
  31. 31.
    Treier M, Pignedoli CA, Laino T et al (2011) Nat Chem 3:61CrossRefGoogle Scholar
  32. 32.
    Yen JH, Leu IC, Lin CC et al (2005) Appl Phys A 80:415CrossRefGoogle Scholar
  33. 33.
    Ghosh A, Subramanyam KS, Krishna KS et al (2008) J Phys Chem C 112:15704CrossRefGoogle Scholar
  34. 34.
    Jin Z, Lu W, O’Neill JO et al (2011) Chem Mater 23:923CrossRefGoogle Scholar
  35. 35.
    Fowle JD, Allen MJ, Tung VC et al (2009) ACS Nano 3:301CrossRefGoogle Scholar
  36. 36.
    Schedin F, Geim AK, Morozov SV et al (2007) Nat Mater 6:652CrossRefGoogle Scholar
  37. 37.
    Rao CNR, Subrahmanyam KS, Ramakrishna Matte HSS et al (2010) Sci Technol Adv Mater 11:054502CrossRefGoogle Scholar
  38. 38.
    Peigney A, Laurent C, Flahaut E et al (2001) Carbon 39:507CrossRefGoogle Scholar
  39. 39.
    Dresselhaus MS, Jorio A, Hofmann M et al (2010) Nano Lett 10:751CrossRefGoogle Scholar
  40. 40.
    Mingyao ZM, Wang J, Outlaw RA et al (2007) Diam Relat Mater 16:196CrossRefGoogle Scholar
  41. 41.
    Ferrari AC, Meyer JC, Scardaci V et al (2006) Phys Rev Lett 97:187401CrossRefGoogle Scholar
  42. 42.
    Choia W, Lahiria L, Seelaboyinaa R et al (2010) Crit Rev Solid State Mater Sci 35:52CrossRefGoogle Scholar
  43. 43.
    Ferrari AC (2007) Solid State Commun 143:47CrossRefGoogle Scholar
  44. 44.
    Dervishi E, Li Z, Watanabe F et al (2009) Chem Mater 21:5491CrossRefGoogle Scholar
  45. 45.
    Kim CD, Min BK, Jung WS (2009) Carbon 47:1610CrossRefGoogle Scholar
  46. 46.
    Dervishi E, Li Z, Shyaka J et al (2011) Chem Phys Lett 501:390CrossRefGoogle Scholar
  47. 47.
    Weng L, Zhang Y, Chen P et al (2008) Appl Phys Lett 93:093107-3CrossRefGoogle Scholar
  48. 48.
    Nemes-Incze P, Osváth Z, Kamarás K et al (2008) Carbon 46:1435CrossRefGoogle Scholar
  49. 49.
    Lu W, Chang G, Luo Y et al (2011) J Mater Sci 46:5260. doi: 10.1007/s10853-011-5464-1 Google Scholar
  50. 50.
    Qian Y, Lu S, Gao F (2011) J Mater Sci 46:3517. doi: 10.1007/s10853-011-5260-y CrossRefGoogle Scholar
  51. 51.
    Waqar Z (2007) J Mater Sci 42:1169. doi: 10.1007/s10853-006-1453-1 CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Pan C (2011) J Mater Sci 46:2622. doi: 10.1007/s10853-010-5116-x CrossRefGoogle Scholar
  53. 53.
    Bandla S, Hanan JC (2011) J Mater Sci. doi: 10.1007/s10853-011-5867-z
  54. 54.
    Ferralis N (2010) J Mater Sci 45:5135. doi: 10.1007/s10853-010-4673-3 CrossRefGoogle Scholar
  55. 55.
    Kalaitzidou K, Fukushima H, Askeland P et al (2008) J Mater Sci 43:2895. doi: 10.1007/s10853-007-1876-3 CrossRefGoogle Scholar
  56. 56.
    Li B, Zhong WH (2011) J Mater Sci 46:5595. doi: 10.1007/s10853-011-5572-y Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Enkeleda Dervishi
    • 1
  • Alexandru R. Biris
    • 2
  • Fumiya Watanabe
    • 1
  • Jean L. Umwungeri
    • 1
  • Thikra Mustafa
    • 1
  • Joshua A. Driver
    • 1
  • Alexandru S. Biris
    • 1
  1. 1.Nanotechnology CenterUniversity of Arkansas at Little RockLittle RockUSA
  2. 2.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania

Personalised recommendations