Journal of Materials Science

, Volume 47, Issue 4, pp 1729–1736 | Cite as

Vibrational and AFM studies of adsorption of glycine on DLC and silicon-doped DLC

  • M. Ahmed
  • A. J. Byrne
  • J. McLaughlin
  • A. Elhissi
  • D. A. Phoenix
  • W. Ahmed


A better understanding of protein adsorption onto surfaces of materials is required to control biocompatibility and bioactivity. Diamond-like carbon (DLC) is known to have excellent biocompatibility. Various samples of a-C:H and silicon-doped a-C:H thin films (Si-DLC) were deposited onto silicon substrates using plasma-enhanced chemical vapour deposition (PECVD). Subsequently, the adsorption of the simplest amino acid glycine onto the surfaces of the thin films was investigated to elucidate the mechanisms involved in protein adhesion. The physicochemical characteristics of the surfaces, before and after adsorption of glycine, were investigated using Raman spectroscopy and atomic force microscopy (AFM). The Raman study highlighted a slight decrease in the I D/I G ratio with increasing the silicon dopant levels. Following exposure to glycine solutions, the presence of bands at ~1735 and ~1200 cm−1 indicates that the adsorption of glycine onto the surfaces has taken place. Glycine was bound to the surfaces via both deprotonated carboxyl and protonated amino groups whilst, as the silicon content in the DLC film increased the adsorption of glycine decreased. AFM analysis showed that the surface roughness increased following exposure to glycine. These results show that at low silicon doping the adsorption of the amino acid was enhanced whilst increased doping levels led to a reduced adsorption compared to undoped DLC. Therefore, doping of DLC may provide an approach to control the protein adsorption.


Atomic Force Microscopy Wear Rate Simple Amino Acid Increase Silicon Content Atomic Force Microscopy Height Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank all the staffs of Northern Ireland Bio-Engineering Centre (NIBEC), who assisted to achieve the Raman and AFM analysis and the University of Ulster for funding under their VCRS scheme.


  1. 1.
    Kawachi EY, Bertran CA, Kuboka LT (1998) Biomaterials 19:2329CrossRefGoogle Scholar
  2. 2.
    Lousinian S, Logothetidis S, Laskarakis A, Gioti M (2007) Biomol Eng 24:107CrossRefGoogle Scholar
  3. 3.
    Yanga P, Huang N, Leng YX, Chen JY, Fu RKY, Kwok SC, Leng Y, Chu PK (2003) Biomaterials 24:2821CrossRefGoogle Scholar
  4. 4.
    Bruininka A, Schroederb A, Franczc G, Hauert R (2005) Biomaterials 26:3487CrossRefGoogle Scholar
  5. 5.
    Grimanelis D, Yang S, Bohme O, Roman E, Alberdi A, Teer DG, Albella JM (2002) Diamond Relat Mater 11:176CrossRefGoogle Scholar
  6. 6.
    Moore A, Tecos G, Nandasiri MI, Garratt E, Wickey KJ, Gao X, Kayani A (2009) J Phys 194:132041CrossRefGoogle Scholar
  7. 7.
    Lackner JM, Waldhauser W (2010) Berg- und Hüttenmännische Monatshefte 155:528CrossRefGoogle Scholar
  8. 8.
    Chen JY, Wang LP, Fu KY, Huang N, Leng Y, Leng YX, Yang P, Wang J, Wan GJ, Sun H, Tian XB, Chu PK (2002) Surf Coat Technol 156:289CrossRefGoogle Scholar
  9. 9.
    Huang N, Yang P, Leng YX, Wang J, Sun H, Chen JY, Wan GJ (2004) Surf Coat Technol 186:218CrossRefGoogle Scholar
  10. 10.
    Hart A, Schmich E, Garrido JA, Hendrnando J, Cathrino SCR, Walter S, Feullner P, Kromka A, Steinmuller D, Stuitzman M (2004) Nat Mater 3:736CrossRefGoogle Scholar
  11. 11.
    Matson DW, McClanahan ED, Lee SL, Windover D (2001) Surf Coat Technol 146–147:344CrossRefGoogle Scholar
  12. 12.
    Matson DW, McClanahan ED, Rice JP, Lee SL, Windover D (2000) Surf Coat Technol 133–134:411CrossRefGoogle Scholar
  13. 13.
    Hsiue GH, Lee SD, Chang PCT, Kao CY (1998) J Biomed Mater Res 42:134CrossRefGoogle Scholar
  14. 14.
    Liu C, Zhao Q, Liu Y, Wang S, Abel EW (2008) Colloid Surf B: Biointerfaces 61:182CrossRefGoogle Scholar
  15. 15.
    Zhao Q, Liu Y, Wang C, Wang S (2007) Appl Surf Sci 253:7254CrossRefGoogle Scholar
  16. 16.
    Pech D, Schupp N, Steyer P, Hack T, Gachon Y, Heau C, Loir AS, Sanchez-Lopez JC (2009) Wear 266:832CrossRefGoogle Scholar
  17. 17.
    Abbas GA, Papakonstantinou P, McLaughlin JA, Weijers-Dall TDM, Elliman RG, Filik J (2005) J Appl Phys 98:103505CrossRefGoogle Scholar
  18. 18.
    Yokota T, Terai T, Kobayashi T, Iwaki M (2006) Nucl Instrum Meth Phys Res B 242:48CrossRefGoogle Scholar
  19. 19.
    Fischer G, Cao X, Cox N, Francis M (2005) Chem Phys 313:39CrossRefGoogle Scholar
  20. 20.
    Hartl A, Nowy S, Hernando J, Garrido JA, Stutzmann M (2005) IEEE 4:496Google Scholar
  21. 21.
    Candel AM, van Nuland NAJ, Martin-Sierra FM, Martinez JC, Conejero-Lara F (2008) J Mol Biol 377:117CrossRefGoogle Scholar
  22. 22.
    Gordon ML, Cooper G, Morin C, Araki T, Turci CC, Kaznatcheev K, Hitchcock AP (2003) J Phys Chem A 107:6144CrossRefGoogle Scholar
  23. 23.
    Jia-tih L, Shukaot L (1990) J Phys D Appl Phys 23:976CrossRefGoogle Scholar
  24. 24.
    Kalish R, Lifshitz Y, Nugent K, Prawer S (1999) Appl Phys Lett 74:2936CrossRefGoogle Scholar
  25. 25.
    Zhang B, Li J, Sun J (2001) Mater Lett 51:219CrossRefGoogle Scholar
  26. 26.
    Peng G, Jun X, Yong P, Wanyu D, Xinlu D, Chuang D (2006) Plasma Sci Technol 8:425CrossRefGoogle Scholar
  27. 27.
    Klauser F, S-Nethl D, Kaindl R, Bertel E, Memme N (2010) Chem Vap Dep 16:127CrossRefGoogle Scholar
  28. 28.
    Liu FX, Yao KL, Liu ZL (2007) Surf Coat Technol 201:7235CrossRefGoogle Scholar
  29. 29.
    Ahmed M, Byrne JA, McLaughlin JAD (2009) J Surf Sci Nanotechnol 7:217CrossRefGoogle Scholar
  30. 30.
    Bendavid A, Martin PJ, Comte C, Preston EW, Haq AJ, Ismail FSM, Singh RK (2007) Diamond Relat Mater 16:1616CrossRefGoogle Scholar
  31. 31.
    Taddei P, Balducci F, Simoni R, Monti P (2005) J Mol Struct 744:507CrossRefGoogle Scholar
  32. 32.
    Ong SE, Zhang S, Du H, Sun D (2007) Diamond Relat Mater 16:1628CrossRefGoogle Scholar
  33. 33.
    Ong SE, Zhang S, Du H, Too HC, Aung KN (2007) Biomaterials 28:4033CrossRefGoogle Scholar
  34. 34.
    Hatada R, Flege S, Baba K, Ensinger W, Kleebe H-J, Sethmann I, Lauterbach S (2010) J Appl Phys 107:083307CrossRefGoogle Scholar
  35. 35.
    Okpalugo TIT, Murphy H, Ogwu AA, Abbas G, Ray SC, Maguire PD, McLaughlin J, McCullough RW (2006) J Biomed Mater Res B Appl Biomater 78:222Google Scholar
  36. 36.
    Pandiarajan S, Umadevi M, Rajaram RK, Ramakrishnan V (2005) Spectrochim Acta Part A 62:630CrossRefGoogle Scholar
  37. 37.
    Sajan D, Binoy J, Pradeep B, Krishna KV, Kartha VB, Joe IH, Jayakumar VS (2004) Spectrochim Acta Part A 60:173CrossRefGoogle Scholar
  38. 38.
    Goryainova SV, Kolesnika EN, Boldyreva EV (2005) Physica B 357:340Google Scholar
  39. 39.
    Stewart S, Fredericks PM (1999) Spectrochem Acta Part A 55:1641CrossRefGoogle Scholar
  40. 40.
    Kumar TV, Joe IH, Nair CPR, Jayakumar VS (2008) J Mol Struct 877:20CrossRefGoogle Scholar
  41. 41.
    Luiz FC, Oliveira ML, Hyaric MM, Berg MV, Almeida HGM (2007) Edwards J Raman Spectrosc 38:1628CrossRefGoogle Scholar
  42. 42.
    Shen J, Ye Y, Hu J, Shen H, Le Z (2001) Spectrochim Acta Part A 57:551CrossRefGoogle Scholar
  43. 43.
    Teixeira MC, Ciminelli VST, Dantas MSS, Diniz SF, Duarte HA (2007) J Colloid Interf Sci 315:128CrossRefGoogle Scholar
  44. 44.
    Pawlukojc A, Leciejewicz J, Tomkinson J, Parker SF (2001) Spectrochim Acta Part A 57:2513CrossRefGoogle Scholar
  45. 45.
    Lim PK, Tam WK, Yeung LF, Lam FM (2007) J Phys Conf Ser 61:708CrossRefGoogle Scholar
  46. 46.
    Qu YQ, Wang Y, Li J, Han KL (2004) Surf Sci 569:12CrossRefGoogle Scholar
  47. 47.
    Matsuda K, Yamaguchi Y, Morita N, Matsunobe T, Yoshikawa M (2007) Thin Solid Films 515:6682CrossRefGoogle Scholar
  48. 48.
    He XM, Walter KC, Nastasi M (2000) J Physics Cond Matter 12:L183CrossRefGoogle Scholar
  49. 49.
    Lofgren P, Krozer A, Lausma J, Kasemo B (1997) Surf Sci 370:277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Ahmed
    • 1
  • A. J. Byrne
    • 1
  • J. McLaughlin
    • 1
  • A. Elhissi
    • 2
  • D. A. Phoenix
    • 2
  • W. Ahmed
    • 2
  1. 1.Nanotechnology Integrated Bio-Engineering CentreUniversity of UlsterBelfastUK
  2. 2.Institute of Nanotechnology and Bioengineering, School of Pharmacy and Biomedical Sciences & School of Computing, Engineering and Physical SciencesUniversity of Central LancashirePrestonUK

Personalised recommendations