Advertisement

Journal of Materials Science

, Volume 47, Issue 3, pp 1504–1513 | Cite as

Determination of local stress–strain properties of resistance spot-welded joints of advanced high-strength steels using the instrumented indentation test

  • Christian Ullner
  • Stephan Brauser
  • Andreas Subaric-Leitis
  • Gert Weber
  • Michael Rethmeier
Article

Abstract

For spot-welded joints, the resistance to mechanical stress depends on the local strength properties and gradients in the weld area. The commonly used methods for investigating the stress–strain behaviour across the weld area are connected with a high level of sample preparation and with considerable limitations in local resolution. A promising method for determining locally resolved stress–strain curves is the instrumented indentation test in connection with the method of representative stress and strain (RS) and the method of artificial neural networks (NNs). The stress–strain properties of the weld nugget and the base metal determined by these two methods are compared and discussed, additionally in relation to the stress–strain curves obtained from the tensile test. The measured Vickers hardness across the weld area is compared with the evaluated local stress–strain properties. Three steels used in automobile manufacturing are investigated: mild steel DC04 and two advanced high-strength steels (TRIP steel HCT690T and martensitic steel HDT 1200M). The results of the two methods (RS and NN) show good correspondence for the base metal area but some significant differences for the weld nugget. Comparing the data across the weld area, no evidence of the presence of residual stress (which would influence the results) was found.

Keywords

Base Metal Mild Steel Strain Curve Heat Affected Zone Indentation Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Maggi S, Murgia M (2008) Weld Int 22:610CrossRefGoogle Scholar
  2. 2.
    Advanced High Strength Steel (AHSS) Application Guidelines Version 4.1 (2010) http://www.worldautosteel.org/Projects/AHSS-Guidelines.aspx. Accessed 13 April 2010
  3. 3.
    Weber G, Göklü S (2006) Welding in the World, 50, No 4/4Google Scholar
  4. 4.
    Radakovic JD, Tumuluru MD (2008) In: Proceeding of the international sheet metal welding conference XIIIGoogle Scholar
  5. 5.
    Chao YJ (2003) J Eng Mater Technol 125:125CrossRefGoogle Scholar
  6. 6.
    Davidson JA (1983) In: SAE Technical Paper 830033. Society of Automotive Engineers, Warrendale, PAGoogle Scholar
  7. 7.
    Zhang J, Senkara H (2005) Resistance welding—fundamental and applications. CRC Press, Boca Raton, FLGoogle Scholar
  8. 8.
    Lin PC, Lin SH, Pan J (2006) Eng Fract Mech 73:2229CrossRefGoogle Scholar
  9. 9.
    Kan YR (1976) Met Eng Q 16:26Google Scholar
  10. 10.
    Pan N, Sheppard S (2002) Int J Fat 24:519CrossRefGoogle Scholar
  11. 11.
    Satoh T, Abe H, Nishikawa K, Morita M (1991) Trans Japan Weld Soc 22:46Google Scholar
  12. 12.
    Tao H, Tong W, Hector LG, Zavattieri PD (2007) J Mater Eng Perform 17:517CrossRefGoogle Scholar
  13. 13.
    Brauser S, Weber G, Rethmeier M (2011) Weld Cut 10:48Google Scholar
  14. 14.
    Zuniga SM, Sheppard SD (1995) Model Simul Mater Sci Eng 391:391CrossRefGoogle Scholar
  15. 15.
    Lee H, Kim N, Lee T (2005) Eng Fract Mech 72:1203CrossRefGoogle Scholar
  16. 16.
    Ambriz RR, Chicot D, Benseddiq N, Mesmacque G, de La Torre SD (2011) Eur J Mech A Solids 30:307CrossRefGoogle Scholar
  17. 17.
    Murty K (1999) Int J Press Vessels Pip 76:361CrossRefGoogle Scholar
  18. 18.
    Rao D, Heerens J, Alves Pinheiro G, dos Santos JF, Huber N (2010) Mater Sci Eng A 527:5018CrossRefGoogle Scholar
  19. 19.
    Kong X, Yang Q, Li B, Rothwell G, English R, Ren X (2008) Mater Des 29:1554CrossRefGoogle Scholar
  20. 20.
    Tyulyukovskiy E, Huber N (2006) J Mater Res 21(3):664CrossRefGoogle Scholar
  21. 21.
    EN ISO 14577 (2003) Metallic materials—instrumented indentation test for hardness and materials parameters, Part 1: test method, Part 2: verification and calibration of the testing devices, Part 3: calibration of reference blocksGoogle Scholar
  22. 22.
    ISO/TR 29381 (2008) Metallic materials—Measurement of mechanical properties by an instrumented indentation test—indentation tensile propertiesGoogle Scholar
  23. 23.
    Ahn JH, Kwon D (2001) J Mater Res 16(11):3170CrossRefGoogle Scholar
  24. 24.
    Jeon EC, Kim JY, Baik MK, Kim SH, Park JS, Kwon D (2006) Mater Sci Eng A 419:196CrossRefGoogle Scholar
  25. 25.
    Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New YorkGoogle Scholar
  26. 26.
    Kloetzer D, Ullner C, Tyulyukovskiy E, Huber N (2006) J Mater Res 21(3):677CrossRefGoogle Scholar
  27. 27.
    Ullner C, Reimann E, Kohlhoff H, Subaric-Leitis A (2010) Measurement 43:216CrossRefGoogle Scholar
  28. 28.
    Advanced Surface Mechanics GmbH (ASMEC), Radeberg, Germany, www.asmec.de
  29. 29.
    ISO 18265 (2003) Metallic materials—conversion of hardness valuesGoogle Scholar
  30. 30.
    Gould JE, Khurana SP, Li T (2006) Weld J 85:111Google Scholar
  31. 31.
    Vogl C, Hoffmann H (2003) Ann CIRP 52:217CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christian Ullner
    • 1
  • Stephan Brauser
    • 1
    • 2
  • Andreas Subaric-Leitis
    • 1
  • Gert Weber
    • 1
  • Michael Rethmeier
    • 1
    • 2
  1. 1.Federal Institute for Materials Research and Testing (BAM)BerlinGermany
  2. 2.Fraunhofer IPKBerlinGermany

Personalised recommendations