Advertisement

Journal of Materials Science

, Volume 47, Issue 3, pp 1489–1496 | Cite as

Magnetic field-guided orientation of carbon nanotubes through their conjugation with magnetic nanoparticles

  • Suresh Kumar
  • Harsimran Kaur
  • Harkiran Kaur
  • Inderpreet Kaur
  • Keya Dharamvir
  • Lalit M. Bharadwaj
Article

Abstract

Low intensity magnetic fields (22mT) rendered by a pair of bar magnets have been used to achieve in situ precise orientation of multiwalled carbon nanotubes (MWCNTs) and their directional deposition on solid substrates. The nanotubes were imparted magnetic characteristics through Fe3O4 (magnetite) nanoparticles covalently attached to their surface. The side walls of nanotubes were first acid oxidized with H2SO4/HNO3 (3:1 v/v) mixture and amine-functionalized magnetic nanoparticles were then interfaced to ends and side walls of the nanotubes through covalent linkages in the presence of a zero length cross linker, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide. Fourier transformed infrared spectroscopic investigations affirmed the functionalization of nanostructures and formation of a magnetic nanohybrid. Transmission electron microscopy results revealed the attachment of nanoparticles along the side walls of MWCNTs. A flow cell was utilized to orient magnetic nanohybrid in the desired direction and also to create thin films of aligned MWCNTs. Further, directional assembly of magnetic MWCNTs at different orientation angles on solid substrates was studied by field emission scanning electron microscopy and optical microscopy. The procedure can be scaled to align CNTs on large surface areas for numerous applications, e.g., nanosensors, field emitters, and composites.

Keywords

External Magnetic Field Flow Cell Optical Polarizer Magnetic Orientation Free Amine Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the support from Department of Information Technology (DIT), Ministry of Information technology (MIT), Govt. of India. The authors are thankful to Er. Dinesh Sharma of Sophisticated Analytical Instruments Facility, Panjab University, Chandigarh, India for TEM measurements. The authors are also thankful to Director CSIO, Chandigarh, India for providing necessary facilities. One of the authors, Suresh Kumar thanks University Grant Commission (UGC), Govt. of India for providing Senior Research Fellowship.

References

  1. 1.
    Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes synthesis, structure, and applications. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Li S, Yu Z, Yen SF, Tang WC, Burke PJ (2004) Nano Lett 4:753CrossRefGoogle Scholar
  3. 3.
    Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H, Peng S, Cho KJ (2003) Nano Lett 3:347CrossRefGoogle Scholar
  4. 4.
    Lin Y, Lu F, Tu Y, Ren Z (2004) Nano Lett 4:191CrossRefGoogle Scholar
  5. 5.
    Kumar MS, Lee SH, Kim TY, Kim TH, Song SM, Yang JW, Nahm KS, Suh EK (2003) Solid State Elect 47:2075CrossRefGoogle Scholar
  6. 6.
    Krupke R, Hennrich F, Weber HB, Kappes MM, Lhneysen HV (2003) Nano Lett 3:1019CrossRefGoogle Scholar
  7. 7.
    Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Science 265:1212CrossRefGoogle Scholar
  8. 8.
    Xin H, Woolley AT (2004) Nano Lett 4:1481CrossRefGoogle Scholar
  9. 9.
    Spotnitz ME, Ryan D, Stone HA (2004) J Mater Chem 14:1299CrossRefGoogle Scholar
  10. 10.
    Dierking I, Scalia G, Morales P, LeClere D (2004) Adv Mater 16:865CrossRefGoogle Scholar
  11. 11.
    Dresselhaus MS, Dresselhaus G, Jorio A (2004) Annu Rev Mater Res 34:247CrossRefGoogle Scholar
  12. 12.
    Smith BW, Benes Z, Luzzi DE, Fischer JE, Waltwers DA, Casavant MJ et al (2000) Appl Phys Lett 77:663CrossRefGoogle Scholar
  13. 13.
    Zaric S, Ostojic GN, Kono J, Shaver J, Moore VC, Hauge RH et al (2004) Nano Lett 4:2219CrossRefGoogle Scholar
  14. 14.
    Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Ed 46:1222CrossRefGoogle Scholar
  15. 15.
    Wu W, He Q, Jiang C (2008) Nanoscale Res Lett 3:397CrossRefGoogle Scholar
  16. 16.
    Billas ML, Chatelain A, de Heer WA (1994) J Magn Magn Mater 265:64Google Scholar
  17. 17.
    Zhu L, Lu G, Chen J (2008) J Heat Transf 130:044502CrossRefGoogle Scholar
  18. 18.
    Jia B, Gao L, Sun J (2007) Carbon 45:1476CrossRefGoogle Scholar
  19. 19.
    Correa-Duarte MA, Grzelczak, Salgueirio-Maceira V, Giersig M, Liz-Marzn, Farle M et al (2005) J Phys Chem B 109(41):19060CrossRefGoogle Scholar
  20. 20.
    Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley JC, Kornev KG (2005) Nano Lett 5:879CrossRefGoogle Scholar
  21. 21.
    Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamura M, Toma HE (2004) J Magn Magn Mater 279(2–3):210CrossRefGoogle Scholar
  22. 22.
    Staros JV, Wright RW, Swingle DM (1986) Anal Biochem 156:220CrossRefGoogle Scholar
  23. 23.
    Sehgal D, Vijay IK (1994) Anal Biochem 218:87CrossRefGoogle Scholar
  24. 24.
    Caho N, Choudhary KR, Thapa RB, Sahoo Y, Ohulchanskyy T, Cartwright AN et al (2007) Adv Mater 19:232CrossRefGoogle Scholar
  25. 25.
    Kathi J, Rhee KY (2008) J Mater Sci 43:33. doi: 10.1007/s10853-007-2209-2 CrossRefGoogle Scholar
  26. 26.
    Chang WH, Cheong IW, Shim SE, Choe S (2006) Macromol Res 14(5):545CrossRefGoogle Scholar
  27. 27.
    Pan B, Cui D, He R, Gao F, Zhang Y (2006) Chem Phys Lett 417:419CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Suresh Kumar
    • 1
  • Harsimran Kaur
    • 1
  • Harkiran Kaur
    • 1
  • Inderpreet Kaur
    • 1
  • Keya Dharamvir
    • 2
  • Lalit M. Bharadwaj
    • 1
  1. 1.Biomolecular Electronics and NanotechnologyCentral Scientific Instruments Organisation (CSIO)ChandigarhIndia
  2. 2.Department of PhysicsPanjab UniversityChandigarhIndia

Personalised recommendations