Journal of Materials Science

, Volume 47, Issue 3, pp 1372–1377 | Cite as

Sustained release of ethyl cellulose micro-particulate drug delivery systems prepared using electrospraying

  • Li-Ya Huang
  • Deng-Guang Yu
  • Christopher Branford-White
  • Li-Min Zhu


Sustained-release ethyl cellulose (EC) micro-particles were prepared by electrospraying. Ketoprofen (KET) was taken as a model drug and various concentrations of EC functioned as a rate-controlling polymer. The morphology of the micro-particles was assessed using SEM. Images showed that as EC content increased, the granules shared similar surface characteristics containing pure EC. Micro-particle structures were analyzed by DSC, XRD, and FTIR. It was noted that the crystalline drug was converted into an amorphous form in all the granulations and that there was chemical interaction between KET and EC observed from FTIR. Dissolution studies revealed that as the amount of EC increased, the drug release rate decreased. This investigation suggests that electrospraying can be exploited as a useful tool for developing novel particulate drug delivery systems.


Differential Scanning Calorimetry Ketoprofen Physical Mixture Ethyl Cellulose Pure Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial support from the UK-CHINA Joint Laboratory for Therapeutic Textiles and Biomedical Textile Materials “111 Project” from Ministry of Education of China (No. B07024).


  1. 1.
    Soussan E, Cassel S, Blanzat M, Rico-Lattes I (2009) Chem Int Ed 48:274CrossRefGoogle Scholar
  2. 2.
    Wise DL (2000) Handbook of pharmaceutical controlled release technology. M. Dekker Inc., New YorkGoogle Scholar
  3. 3.
    Ramakrishna S, Fujihara K, Teo W, Lim T, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co. Pvt. Ltd., BerlinCrossRefGoogle Scholar
  4. 4.
    Pareta R, Edirisinghe MJ (2006) J R Soc Interface 3:573CrossRefGoogle Scholar
  5. 5.
    Reyderman L, Stavchansky S (1995) Int J Pharm 124:75CrossRefGoogle Scholar
  6. 6.
    Xie J, Marijnissen JCM, Wang H (2006) Biomaterials 27:3321CrossRefGoogle Scholar
  7. 7.
    Xu Y, Hanna MA (2006) Int J Pharm 320:30CrossRefGoogle Scholar
  8. 8.
    Enayati M, Chang M-w, Bragman F, Edirisinghe M, Stride E (2011) Colloid Surf A 382:154CrossRefGoogle Scholar
  9. 9.
    Hayati I, Bailey AI, Tadros THF (1986) Nature 319:41CrossRefGoogle Scholar
  10. 10.
    Jaworek A (2007) Powder Technol 176:18CrossRefGoogle Scholar
  11. 11.
    Edirisinghe M, Jayasinghe S (2004) Int J Appl Ceram Technol 1:140CrossRefGoogle Scholar
  12. 12.
    Upadrashta SM, Katikaneni PR, Hileman GA, Keshary PR (1993) Drug Dev Ind Pharm 19:449CrossRefGoogle Scholar
  13. 13.
    Eichhorn SJ, Dufresne A, Aranguren M et al (2010) J Mater Sci 45:1. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  14. 14.
    Wanga Z, Wub H, Liao C, Zhoud N, Cheng W, Wan Y (2011) Carbohydr Polym 84:624CrossRefGoogle Scholar
  15. 15.
    Vergote GJ, Vervaet C, Van Driessche I, Hoste S et al (2001) Int J Pharm 219:81CrossRefGoogle Scholar
  16. 16.
    Roda A, Sabatini L, Mirasoli M et al (2002) Int J Pharm 241:165CrossRefGoogle Scholar
  17. 17.
    Yamada T, Onishi H, Machida Y (2001) J Control Release 75:271CrossRefGoogle Scholar
  18. 18.
    Pignatello R, Ferro M, De Guidi G, Salemi G, Vandelli MA, Guccione S, Geppi M, Forte C, Puglisi G (2001) Int J Pharm 218:27CrossRefGoogle Scholar
  19. 19.
    Li B, Zhou H, Huang G (2007) J Mater Sci 42:199. doi: 10.1007/s10853-006-1052-1 CrossRefGoogle Scholar
  20. 20.
    Yu DG, Shen XX, Branford-White C, White K, Zhu LM, Bligh SWA (2009) Nanotechnology 20:055104CrossRefGoogle Scholar
  21. 21.
    Aouada FA, deMoura MR, Orts WJ, Mattoso LHC (2010) J Mater Sci 45:4977. doi: 10.1007/s10853-009-4180-6 CrossRefGoogle Scholar
  22. 22.
    Rao BS, Murthy KV (2002) Int J Pharm 231:97CrossRefGoogle Scholar
  23. 23.
    Makhija SN, Vavia PR (2002) Eur J Pharm Biopharm 54:9CrossRefGoogle Scholar
  24. 24.
    Agnihotri SA, Aminabhavi TM (2004) J Control Release 96:245CrossRefGoogle Scholar
  25. 25.
    Ravindra R, Rao AK, Khan AA (1999) J Appl Polym Sci 72:689CrossRefGoogle Scholar
  26. 26.
    Lambert JB, Shurvell HF, Lightner DA, Cooks RG (1998) Organic structural spectroscopy. Prentice Hall, Upper Saddle RiverGoogle Scholar
  27. 27.
    Silverstein RM, Bassler GC, Morril TC (1991) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Li-Ya Huang
    • 1
  • Deng-Guang Yu
    • 2
  • Christopher Branford-White
    • 3
  • Li-Min Zhu
    • 1
  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.School of Material Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiPeople’s Republic of China
  3. 3.Institute for Health Research and PolicyLondon Metropolitan UniversityLondonUK

Personalised recommendations