Journal of Materials Science

, Volume 47, Issue 2, pp 960–968 | Cite as

Effect of pre-strain on grain size distributions in 316H austenitic stainless steel



An experimental study addressing the effect of tensile deformation on recrystallized grain size has been undertaken to explore the conditions leading to abnormal grain growth in Type 316H austenitic stainless steel. Following a solution heat treatment, a Type 316H stainless steel has been subjected to various tensile deformations up to a maximum of approximately 50% strain and then heated at a temperature of 1150 °C for 0.5 h followed by furnace cooling. A fraction of abnormally large grains is observed following a prior strain of approximately 20%. The results are presented, in terms of standard statistical analysis, and also graphically. The graphical presentation provides a clear, visual appreciation of uni- and bi-modal distributions, which may be of general help in other analyses of this nature.


Grain Size Distribution Austenitic Stainless Steel Critical Strain Solution Heat Treatment Oxalic Acid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the EPSRC for financial support (Grant EP/H006729/1) and EDF Energy Ltd for the provision of the material.


  1. 1.
    Flewitt PEJ, Wild RK (2001) In: Grain boundaries: their microstructure and chemistry. John Wiley & Sons Ltd., ChichesterGoogle Scholar
  2. 2.
    Smith CS (1948) In: Metals technology, vol 175. Trans AIME, New York, pp 15–51Google Scholar
  3. 3.
    Smith CS (1952) In: Metal interfaces, ASM, Cleveland, pp 65–113Google Scholar
  4. 4.
    Randle V (1993) Mater Sci Forum 113–115:189CrossRefGoogle Scholar
  5. 5.
    Hall EO (1951) Proc Phys Soc Ser B 64:747CrossRefGoogle Scholar
  6. 6.
    Petch NJ (1953) J Iron Steel Inst 174:25Google Scholar
  7. 7.
    Druce SG (1986) Acta Metall 34(2):219CrossRefGoogle Scholar
  8. 8.
    Kurzydlowski KJ (1990) Scr Metall Mater 24(5):879CrossRefGoogle Scholar
  9. 9.
    Ramtani S, Dirras G, Bui HQ (2010) Mech Mater 42(5):522CrossRefGoogle Scholar
  10. 10.
    Moore PG (1969) In: Principals of statistical techniques. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. 11.
    Underwood EE (1970) In: Quantitative stereology. Addison-Wesley Publishing Company, ReadingGoogle Scholar
  12. 12.
    DeHoff RT, Rhines FN (1968) In: Quantitative microscopy. McGraw-Hill, New YorkGoogle Scholar
  13. 13.
    Berbenni S, Favier V, Bui HQ (2007) Int J Plast 23(1):114CrossRefGoogle Scholar
  14. 14.
    Exner HE (1972) Int Metall Rev 17(1):25Google Scholar
  15. 15.
    Tweed CJ, Hansen N, Ralph B (1985) Metallography 18(2):115CrossRefGoogle Scholar
  16. 16.
    Koo JB, Yoon DY, Henry MF (2002) Metall Mater Trans A 33A:3803CrossRefGoogle Scholar
  17. 17.
    Ralph B (1990) Mater Sci Technol 6:1139Google Scholar
  18. 18.
    Humphreys FJ (1992) Mater Sci Technol 8:135Google Scholar
  19. 19.
    Srolovitz DJ, Grest GS, Anderson MP (1985) Acta Metall 33(12):2233CrossRefGoogle Scholar
  20. 20.
    Marshall P (1984) In: Austenitic stainless steels: microstructure and mechanical properties, Elsevier Applied Science Publishers, BarkingGoogle Scholar
  21. 21.
    Muirhead J, Cawley J, Strang A, English CA, Titchmarsh J (2000) Mater Sci Technol 16(10):1160Google Scholar
  22. 22.
    Turski M, Bouchard PJ, Steuwer A, Withers PJ (2008) Acta Mater 56(14):3598CrossRefGoogle Scholar
  23. 23.
    Bompas-Smith JH (1983) In: Mechanical survival: the use of reliability data. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Wu SJ, Knott JF (2004) J Mech Phys Solids 52(4):907CrossRefGoogle Scholar
  25. 25.
    Abbaschian R, Abbaschian L, Reed Hill RE (2009) In: Principles of physical metallurgy. Cengage Learning, New DelhiGoogle Scholar
  26. 26.
    Hillert M (1965) Acta Metall 13(3):227CrossRefGoogle Scholar
  27. 27.
    Chang CH (2000) Fatigue crack growth in simulated HAZ structures of stainless steel weldments. PhD Thesis, The University of BirminghamGoogle Scholar
  28. 28.
    Randle V, Ralph B (1986) Acta Metall 34(5):891CrossRefGoogle Scholar
  29. 29.
    Tweed JH, Knott JF (1986) Acta Metall 35(7):1401Google Scholar
  30. 30.
    Sharon JA, Su PC, Prinz FB, Hemker KJ (2011) Scr Mater 64(7):25CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Mahalingam
    • 1
  • P. E. J. Flewitt
    • 1
    • 2
  • J. F. Knott
    • 3
  1. 1.Interface Analysis CentreUniversity of BristolBristolUK
  2. 2.School of Physics, H H Wills Physics LaboratoryUniversity of BristolBristolUK
  3. 3.School of Metallurgy and Materials, College of Engineering and Physical ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations