Skip to main content
Log in

On the development of microstructures and residual stresses during laser cladding and post-heat treatments

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, laser cladding process with a blown powder feeding was used to deposit nickel-based IN-625 superalloy, cobalt-based hardfacing Stellite 6 alloy and high-vanadium CPM 10V tool steel onto a similar or dissimilar base material, respectively, to investigate the development and controllability of process-induced residual stresses in the clad and to analyse their correlation with microstructural evolutions of the clad and heat-affected zone (HAZ) during cladding and post-heat treatments. The residual stresses were evaluated using the hole-drilling method as per ASTM E837-95, whereas the microstructures were studied using X-ray diffractometer, optical microscope and scanning electron microscope. A particular attention was paid to combined effect of both clad and HAZ on the build-up of residual stresses in the clad. It is expected that the experimental results will form a useful addition to the existing knowledge with respect to the topic and, more significantly, to promote confidence on industrial applications of laser-clad IN-625, Stellite 6 and CPM 10V materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jensen TA (2001) In: Ready JF, Farson DF (eds) LIA handbook of laser materials processing. LIA/Magnolia Publishing Inc., Orlando, p 284

    Google Scholar 

  2. Steen WM (1998) Laser material processing, 2nd edn. Springer, London, p 248

    Google Scholar 

  3. Vilar R (1999) J Laser Appl 11(2):64

    Article  CAS  Google Scholar 

  4. Toyserkani E, Khajepour A, Corbin S (2005) Laser cladding. CRC Press, Boca Raton, p 1

    Google Scholar 

  5. Schubert E, Seefeld T, Rinn A, Sepold G (1999) J Therm Spray Technol 8(4):590

    Article  CAS  Google Scholar 

  6. Dubourg L, Archambeault J (2008) Surf Coat Technol 202:5863

    Article  CAS  Google Scholar 

  7. Sliva B, Pires I, Quintino L (2008) Mater Sci Forum 587–588:936

    Article  Google Scholar 

  8. Xu G, Kutsuna M, Liu Z, Yamada K (2006) Surf Coat Technol 201:1138

    Article  CAS  Google Scholar 

  9. Thompson S (1999) Handbook of mold, tool and die repair welding. William Andrew Publishing, Burlington, p 3

    Book  Google Scholar 

  10. Preciado WT, Bohorquez CEN (2006) J Mater Process Technol 179:244

    Article  CAS  Google Scholar 

  11. Champagne VK (2007) In: Champagne VK (ed) The cold spray materials deposition process: fundamentals & applications. Woodhead Publishing Limited, Cambridge, England, p 327

    Chapter  Google Scholar 

  12. Gnyusov SN, Gnyusov KS, Durakov VG (2008) Weld Int 22(12):863

    Article  Google Scholar 

  13. Bruckner F, Lepski D, Beyer E (2007) J Therm Spray Technol 16(3):355

    Article  Google Scholar 

  14. Lepski D, Bruckner F (2009) In: Dowden J (ed) The theory of laser materials processing: heat and mass transfer in modern technology. Springer, The Netherland, p 235

    Google Scholar 

  15. Chen JY, Xue L, Visscher H, Wolfe J (2009) In: Symposium on surface protection for enhanced material performance in materials science & technology 2009 (MS&T’09), Pittsburgh, p 2090

  16. Dekumbis R (1989) In: Proceedings of 6th conference on lasers in manufacturing, Birmingham, UK, IFS Ltd, p 185

  17. Pei YT, De Hosson JThM (2000) JOM-e 52(1). http://www.tms.org/pubs/journals/JOM/0001/Pei/Pei-0001.html

  18. Inoue T (2005) In: Feng Z (ed) Processes and mechanisms of welding residual stress and distortion. Woodhead Publishing Ltd., Cambridge, England, p 100

    Google Scholar 

  19. Inoue T (2002) In: Totten G, Howes M, Inoue T (eds) Handbook of residual stresses and deformation of steel. ASM International, Materials Park, p 296

    Google Scholar 

  20. Pilloz M, Pelletier JM, Vannes AB (1992) J Mater Sci 27:1240. doi:10.1007/BF01142030

    Article  CAS  Google Scholar 

  21. Dubourg L, Hlawka F, Cornet A (2006) In: Sudarshan TS, Jeandin M, Stiglich JJ (eds) Surface modification technologies XVIII. ASM International, Materials Park, p 331

    Google Scholar 

  22. Chen Y, Liang X, Liu Y, Xu B (2010) Mater Des 31:3852

    Article  CAS  Google Scholar 

  23. Pluyette E, Sprauel JM (1994) In: Proceedings of 4th international conference on residual stresses, Baltimore, Maryland, p 860

  24. Grum J, Znidarsic M (2002) Mater Sci Forum 404-407:437

    Article  CAS  Google Scholar 

  25. Tuominen J, Vuoristo P, Mantyla T (2005) In: ICALEO 2005, LIA, p 635

  26. De Oliveira U, Ocelik V, De Hosson JThM (2006) Surf Coat Technol 201:533

    Article  Google Scholar 

  27. De Freitas M, Pereira MS, Michaud H, Pantelis D (1993) Mater Sci Eng A 167:115

    Article  Google Scholar 

  28. Sexton L, Lavin S, Byrne G, Kennedy A (2002) J Mater Process Technol 122:63

    Article  Google Scholar 

  29. Deloro Stellite, Stellite® 6 Alloy (Technical Data). www.stellite.com

  30. Frenk A, Henchoz N, Kurz W (1993) Z Metallkd 84(12):886

    CAS  Google Scholar 

  31. Crucible Research Service Centre (2003) CRUCIBLE CPM® 10 V® (AISI A11), Issue #7

  32. Hu YP, Chen CW, Mukherjee K (1998) J Mater Sci 33:1287. doi:10.1023/A:1004346214050

    Article  CAS  Google Scholar 

  33. Donachie MJ, Donachie SJ (eds) (2002) In: Superalloys: a technical guide. ASM International, Materials Park, p 4

  34. ASTM International (2009) Standard specification for wrought carbon steel wheels (Designation: A 504/A 504M–08)

  35. Bauccio M (ed) (1993) In: ASM metals reference book, 3rd edn. ASM International, Materials Park, p 302

  36. Donachie MJ, Donachie SJ (eds) (2002) In: Superalloys: a technical guide, 2nd edn. ASM International, Materials Park, p 245

  37. Xue L, Theriault A, Chen JY, Islam MU, Wieczorek A, Draper G (2002) In: Srivatsan TS, Varin RA (eds) Processing & fabrication of advanced materials X. ASM International, Materials Park, p 361

    Google Scholar 

  38. Measurements Group, Inc. (1992) Model RS-200 milling guide—instruction manual

  39. Lu J, James MR, Mordfin L (1997) In: Lu J (ed) Handbook of measurement of residual stresses. The Fairmont Press, Inc., Lilburn, p 229

    Google Scholar 

  40. Conlon K, Rogge R, Chen JY, Xue L (2005) Investigation of residual stresses in laser-clad metal plates by neutron diffraction, NRC-SIMS Internal Report

  41. Haynes international, high-temperature alloys data sheet H-3073D: Haynes 625 alloy. http://www.haynesintl.com

  42. D’Oliveira ASCM, Da Silva PSCP, Vilar R (2002) Surf Coat Technol 153:203

    Article  Google Scholar 

  43. Chang SS, Wu HC, Chen C (2008) Mater Manuf Process 23:708

    Article  CAS  Google Scholar 

  44. Onink M, Brakman CM, Tichelaar FD, Mettemeijer EJ, Van der Zwaag S, Root JH, Konyer NB (1993) Scripta Metall Mater 29:1011

    Article  CAS  Google Scholar 

  45. Blackwood RR, Jarvis LM, Hoffman DG, Totten GE (1998) In: The 18th ASM heat treating society conference & exposition, Rosemont, IL, p 575

  46. Bendeich P, Alam N, Brandt M, Carr D, Short K, Blevins R, Curfs C, Kirstein O, Atkinson G, Holden T, Rogge R (2006) Mater Sci Eng A 437:70

    Article  Google Scholar 

  47. Zinn W, Scholtes B (2002) In: Totten GE, Howes M, Inoue T (eds) Handbook of residual stresses and deformation of steel. ASM International, Materials Park, p 391

    Google Scholar 

  48. Costa L, Vilar R, Reti T, Colaço R, Deus AM, Felde I (2005) Mater Sci Forum 473–474:315

  49. Costa L, Reti T, Deus AM, Vilar R (2002) In: Keicher D, Sears JW, Smugeresky JE (eds) Proceedings of international conference on metal powder deposition for rapid manufacturing, MPIF, Princeton, NJ, p 172

  50. Vilar R, Colaço R, Almeida A (1995) Opt Quant Electron 27:1273

    CAS  Google Scholar 

  51. Wang SH, Chen JY, Xue L (2006) Surf Coat Technol 200:3446

    Article  CAS  Google Scholar 

  52. Leunda J, Soriano C, Sanz C, García Navas V (2011) Physics Procedia 12:345

    Article  CAS  Google Scholar 

  53. Kusy M, Caplovic L, Grgac P, Vyrostkova A (2004) J Mater Process Technol 157–158:729

    Article  Google Scholar 

  54. Kusy M, Grgac P, Behulova M, Vyrostkova A, Miglierini M (2004) Mater Sci Eng A 375–377:599

    Google Scholar 

  55. Boccalini M, Goldenstein H (2001) Int Mater Rev 46(2):92

    Article  CAS  Google Scholar 

  56. Colaço R, Vilar R (1998) J Mater Sci Lett 17:563

    Article  Google Scholar 

  57. Colaço R, Vilar R (2004) Mater Sci Eng A 385:123

    Google Scholar 

  58. Hemmati I, Ocelík V, De Hosson JThM (2011) J Mater Sci 46:3405. doi:10.1007/s10853-010-5229-2

    Article  CAS  Google Scholar 

  59. Linde group, white paper: sub-zero treatment: technology, processes and equipment, 1st Sept. 2010, Germany. www.linde-gas.com

Download references

Acknowledgements

Authors would like to thank J. Fenner, A. Chen and M. Meinert (NRC-IMI-London) for their important contributions on the preparation and metallurgical characterization of the clad specimens. Authors highly appreciated critical comments and suggestions from the paper’s reviewers as well, which were beneficial to the improvement of discussion in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Wang, SH. & Xue, L. On the development of microstructures and residual stresses during laser cladding and post-heat treatments. J Mater Sci 47, 779–792 (2012). https://doi.org/10.1007/s10853-011-5854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5854-4

Keywords

Navigation