Journal of Materials Science

, Volume 47, Issue 2, pp 779–792 | Cite as

On the development of microstructures and residual stresses during laser cladding and post-heat treatments

  • Jianyin Chen
  • Sheng-Hui Wang
  • Lijue Xue


In this article, laser cladding process with a blown powder feeding was used to deposit nickel-based IN-625 superalloy, cobalt-based hardfacing Stellite 6 alloy and high-vanadium CPM 10V tool steel onto a similar or dissimilar base material, respectively, to investigate the development and controllability of process-induced residual stresses in the clad and to analyse their correlation with microstructural evolutions of the clad and heat-affected zone (HAZ) during cladding and post-heat treatments. The residual stresses were evaluated using the hole-drilling method as per ASTM E837-95, whereas the microstructures were studied using X-ray diffractometer, optical microscope and scanning electron microscope. A particular attention was paid to combined effect of both clad and HAZ on the build-up of residual stresses in the clad. It is expected that the experimental results will form a useful addition to the existing knowledge with respect to the topic and, more significantly, to promote confidence on industrial applications of laser-clad IN-625, Stellite 6 and CPM 10V materials.


Austenite Martensite Residual Stress Martensitic Transformation Computer Numerically Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors would like to thank J. Fenner, A. Chen and M. Meinert (NRC-IMI-London) for their important contributions on the preparation and metallurgical characterization of the clad specimens. Authors highly appreciated critical comments and suggestions from the paper’s reviewers as well, which were beneficial to the improvement of discussion in this article.


  1. 1.
    Jensen TA (2001) In: Ready JF, Farson DF (eds) LIA handbook of laser materials processing. LIA/Magnolia Publishing Inc., Orlando, p 284Google Scholar
  2. 2.
    Steen WM (1998) Laser material processing, 2nd edn. Springer, London, p 248Google Scholar
  3. 3.
    Vilar R (1999) J Laser Appl 11(2):64CrossRefGoogle Scholar
  4. 4.
    Toyserkani E, Khajepour A, Corbin S (2005) Laser cladding. CRC Press, Boca Raton, p 1Google Scholar
  5. 5.
    Schubert E, Seefeld T, Rinn A, Sepold G (1999) J Therm Spray Technol 8(4):590CrossRefGoogle Scholar
  6. 6.
    Dubourg L, Archambeault J (2008) Surf Coat Technol 202:5863CrossRefGoogle Scholar
  7. 7.
    Sliva B, Pires I, Quintino L (2008) Mater Sci Forum 587–588:936CrossRefGoogle Scholar
  8. 8.
    Xu G, Kutsuna M, Liu Z, Yamada K (2006) Surf Coat Technol 201:1138CrossRefGoogle Scholar
  9. 9.
    Thompson S (1999) Handbook of mold, tool and die repair welding. William Andrew Publishing, Burlington, p 3CrossRefGoogle Scholar
  10. 10.
    Preciado WT, Bohorquez CEN (2006) J Mater Process Technol 179:244CrossRefGoogle Scholar
  11. 11.
    Champagne VK (2007) In: Champagne VK (ed) The cold spray materials deposition process: fundamentals & applications. Woodhead Publishing Limited, Cambridge, England, p 327CrossRefGoogle Scholar
  12. 12.
    Gnyusov SN, Gnyusov KS, Durakov VG (2008) Weld Int 22(12):863CrossRefGoogle Scholar
  13. 13.
    Bruckner F, Lepski D, Beyer E (2007) J Therm Spray Technol 16(3):355CrossRefGoogle Scholar
  14. 14.
    Lepski D, Bruckner F (2009) In: Dowden J (ed) The theory of laser materials processing: heat and mass transfer in modern technology. Springer, The Netherland, p 235Google Scholar
  15. 15.
    Chen JY, Xue L, Visscher H, Wolfe J (2009) In: Symposium on surface protection for enhanced material performance in materials science & technology 2009 (MS&T’09), Pittsburgh, p 2090Google Scholar
  16. 16.
    Dekumbis R (1989) In: Proceedings of 6th conference on lasers in manufacturing, Birmingham, UK, IFS Ltd, p 185Google Scholar
  17. 17.
    Pei YT, De Hosson JThM (2000) JOM-e 52(1).
  18. 18.
    Inoue T (2005) In: Feng Z (ed) Processes and mechanisms of welding residual stress and distortion. Woodhead Publishing Ltd., Cambridge, England, p 100Google Scholar
  19. 19.
    Inoue T (2002) In: Totten G, Howes M, Inoue T (eds) Handbook of residual stresses and deformation of steel. ASM International, Materials Park, p 296Google Scholar
  20. 20.
    Pilloz M, Pelletier JM, Vannes AB (1992) J Mater Sci 27:1240. doi: 10.1007/BF01142030 CrossRefGoogle Scholar
  21. 21.
    Dubourg L, Hlawka F, Cornet A (2006) In: Sudarshan TS, Jeandin M, Stiglich JJ (eds) Surface modification technologies XVIII. ASM International, Materials Park, p 331Google Scholar
  22. 22.
    Chen Y, Liang X, Liu Y, Xu B (2010) Mater Des 31:3852CrossRefGoogle Scholar
  23. 23.
    Pluyette E, Sprauel JM (1994) In: Proceedings of 4th international conference on residual stresses, Baltimore, Maryland, p 860Google Scholar
  24. 24.
    Grum J, Znidarsic M (2002) Mater Sci Forum 404-407:437CrossRefGoogle Scholar
  25. 25.
    Tuominen J, Vuoristo P, Mantyla T (2005) In: ICALEO 2005, LIA, p 635Google Scholar
  26. 26.
    De Oliveira U, Ocelik V, De Hosson JThM (2006) Surf Coat Technol 201:533CrossRefGoogle Scholar
  27. 27.
    De Freitas M, Pereira MS, Michaud H, Pantelis D (1993) Mater Sci Eng A 167:115CrossRefGoogle Scholar
  28. 28.
    Sexton L, Lavin S, Byrne G, Kennedy A (2002) J Mater Process Technol 122:63CrossRefGoogle Scholar
  29. 29.
    Deloro Stellite, Stellite® 6 Alloy (Technical Data).
  30. 30.
    Frenk A, Henchoz N, Kurz W (1993) Z Metallkd 84(12):886Google Scholar
  31. 31.
    Crucible Research Service Centre (2003) CRUCIBLE CPM® 10 V® (AISI A11), Issue #7Google Scholar
  32. 32.
    Hu YP, Chen CW, Mukherjee K (1998) J Mater Sci 33:1287. doi: 10.1023/A:1004346214050 CrossRefGoogle Scholar
  33. 33.
    Donachie MJ, Donachie SJ (eds) (2002) In: Superalloys: a technical guide. ASM International, Materials Park, p 4Google Scholar
  34. 34.
    ASTM International (2009) Standard specification for wrought carbon steel wheels (Designation: A 504/A 504M–08)Google Scholar
  35. 35.
    Bauccio M (ed) (1993) In: ASM metals reference book, 3rd edn. ASM International, Materials Park, p 302Google Scholar
  36. 36.
    Donachie MJ, Donachie SJ (eds) (2002) In: Superalloys: a technical guide, 2nd edn. ASM International, Materials Park, p 245Google Scholar
  37. 37.
    Xue L, Theriault A, Chen JY, Islam MU, Wieczorek A, Draper G (2002) In: Srivatsan TS, Varin RA (eds) Processing & fabrication of advanced materials X. ASM International, Materials Park, p 361Google Scholar
  38. 38.
    Measurements Group, Inc. (1992) Model RS-200 milling guide—instruction manualGoogle Scholar
  39. 39.
    Lu J, James MR, Mordfin L (1997) In: Lu J (ed) Handbook of measurement of residual stresses. The Fairmont Press, Inc., Lilburn, p 229Google Scholar
  40. 40.
    Conlon K, Rogge R, Chen JY, Xue L (2005) Investigation of residual stresses in laser-clad metal plates by neutron diffraction, NRC-SIMS Internal ReportGoogle Scholar
  41. 41.
    Haynes international, high-temperature alloys data sheet H-3073D: Haynes 625 alloy.
  42. 42.
    D’Oliveira ASCM, Da Silva PSCP, Vilar R (2002) Surf Coat Technol 153:203CrossRefGoogle Scholar
  43. 43.
    Chang SS, Wu HC, Chen C (2008) Mater Manuf Process 23:708CrossRefGoogle Scholar
  44. 44.
    Onink M, Brakman CM, Tichelaar FD, Mettemeijer EJ, Van der Zwaag S, Root JH, Konyer NB (1993) Scripta Metall Mater 29:1011CrossRefGoogle Scholar
  45. 45.
    Blackwood RR, Jarvis LM, Hoffman DG, Totten GE (1998) In: The 18th ASM heat treating society conference & exposition, Rosemont, IL, p 575Google Scholar
  46. 46.
    Bendeich P, Alam N, Brandt M, Carr D, Short K, Blevins R, Curfs C, Kirstein O, Atkinson G, Holden T, Rogge R (2006) Mater Sci Eng A 437:70CrossRefGoogle Scholar
  47. 47.
    Zinn W, Scholtes B (2002) In: Totten GE, Howes M, Inoue T (eds) Handbook of residual stresses and deformation of steel. ASM International, Materials Park, p 391Google Scholar
  48. 48.
    Costa L, Vilar R, Reti T, Colaço R, Deus AM, Felde I (2005) Mater Sci Forum 473–474:315Google Scholar
  49. 49.
    Costa L, Reti T, Deus AM, Vilar R (2002) In: Keicher D, Sears JW, Smugeresky JE (eds) Proceedings of international conference on metal powder deposition for rapid manufacturing, MPIF, Princeton, NJ, p 172Google Scholar
  50. 50.
    Vilar R, Colaço R, Almeida A (1995) Opt Quant Electron 27:1273Google Scholar
  51. 51.
    Wang SH, Chen JY, Xue L (2006) Surf Coat Technol 200:3446CrossRefGoogle Scholar
  52. 52.
    Leunda J, Soriano C, Sanz C, García Navas V (2011) Physics Procedia 12:345CrossRefGoogle Scholar
  53. 53.
    Kusy M, Caplovic L, Grgac P, Vyrostkova A (2004) J Mater Process Technol 157–158:729CrossRefGoogle Scholar
  54. 54.
    Kusy M, Grgac P, Behulova M, Vyrostkova A, Miglierini M (2004) Mater Sci Eng A 375–377:599Google Scholar
  55. 55.
    Boccalini M, Goldenstein H (2001) Int Mater Rev 46(2):92CrossRefGoogle Scholar
  56. 56.
    Colaço R, Vilar R (1998) J Mater Sci Lett 17:563CrossRefGoogle Scholar
  57. 57.
    Colaço R, Vilar R (2004) Mater Sci Eng A 385:123Google Scholar
  58. 58.
    Hemmati I, Ocelík V, De Hosson JThM (2011) J Mater Sci 46:3405. doi: 10.1007/s10853-010-5229-2 CrossRefGoogle Scholar
  59. 59.
    Linde group, white paper: sub-zero treatment: technology, processes and equipment, 1st Sept. 2010, Germany.

Copyright information

© Her Majesty the Queen in Right of Canada 2011

Authors and Affiliations

  1. 1.Industrial Materials InstituteNational Research Council of CanadaLondonCanada
  2. 2.Chalk River LaboratoriesAtomic Energy of Canada LimitedChalk RiverCanada

Personalised recommendations